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Abstract

In many markets a centralized mechanism determines the allocation of goods. When an
individual-level intervention affects submissions to the mechanism, program evaluation is chal-
lenging due to spillover effects that occur through the mechanism. For example, a bidder-level
treatment that increases some bids in an auction will impact the market-clearing price, affecting
all auction participants. We show that if the mechanism is truthful and has a “cutoff” structure,
then interference is constrained, and it is possible to estimate the Global Treatment Effect (GTE)
under a selection-on-observables assumption. Our proposed estimator is doubly-robust and has
an asymptotic variance that meets the semi-parametric efficiency bound. We also characterize
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impact of an information intervention on inequality in the Chilean school system.
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1 Introduction

An individual-level intervention in an economic system rarely affects agents in isolation. Interactions

among agents through markets or social networks lead to spillover effects, where the treatment of

one agent affects the outcomes of others. Spillover effects make it challenging to estimate global

treatment effects, such as the difference in expected outcomes when everyone is treated compared to

when nobody is treated (τGTE). Existing work often imposes either a model of partial interference,

where there is no interference across clusters of agents (Baird et al., 2018; Hudgens and Halloran,

2008), or a network model, where connections between agents are sparse (Aronow and Samii, 2017;

Leung, 2020). There has been little progress on estimating global treatment effects in settings

with complete interference, where the treatment of each individual can impact the outcomes of

anyone else in the sample (Miles et al., 2019). The main contribution of this paper is showing

that in markets where spillover effects are mediated by a specific class of centralized allocation

mechanisms, even though there is complete interference, non-parametric estimation and inference

for global treatment effects is possible.

Settings where a centralized mechanism allocates scarce items are increasingly common in prac-

tice. In the U.S., versions of the deferred acceptance algorithm allocate students to schools (Ab-

dulkadiroğlu and Sönmez, 2003), and medical school graduates to residency programs (Roth, 2003).

Auctions allocate advertisements to search queries (Varian and Harris, 2014) and Treasury bonds to

investors (McMillan, 2003). Often, policymakers are interested in estimating how an intervention

that affects the reported preferences of market participants will impact resulting allocations from

the mechanism. For example, Allende et al. (2019) provide information about school quality to

families in a randomized experiment in Chile, where a centralized mechanism determines alloca-

tions to schools. One of their target estimands is τGTE , where the treatment is the information

intervention and the outcome is the allocation of low-income families to high quality schools.

Standard non-parametric approaches, such as the differences-in-means estimator of the Aver-

age Treatment Effect, do not estimate τGTE , even when the treatment is randomly assigned. By

increasing the number of applicants to schools with limited capacity, the treatment affects conges-

tion in the allocation system, which violates the no-interaction (SUTVA) assumption of the Rubin

Causal Model (Heckman et al., 1998). To estimate τGTE , Allende et al. (2019) use data from the

experiment to estimate a structural model of reported preferences over schools, and simulate the

relevant counterfactuals using this model and the centralized mechanism. This paper proposes a

new non-parametric approach for estimating τGTE in this type of setting, which does not require

correctly specifying a parametric model of individual behavior, and can be used with a variety of

mechanisms and treatments. The estimator runs a re-weighted and perturbed version of the cen-

tralized mechanism on the observed submissions to the mechanism. The method is doubly-robust,

which means that a variety of flexible machine learning methods can be used to estimate the weights

and perturbations.

We begin by defining τGTE in a potential outcomes model that allows for complete interference.

We then make three major restrictions that limit interference in this model so that identifying
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τGTE is possible: SUTVA holds at the level of individual reports to the mechanism, outcomes are

a deterministic function of allocations, and allocations are determined by a centralized mechanism

that is truthful and has a cutoff representation (Azevedo and Leshno, 2016; Agarwal and Somaini,

2018). The first restriction rules out network-type information spillovers, since our focus is on

spillover effects that occur through the mechanism. The second restriction means that we study

the causal effect of a pre-mechanism intervention on some function of allocations, which is often

of interest to policymakers. The existing literature has focused on a different type of causal effect,

which is the effect of allocations on future outcomes, like income or test scores (Abdulkadiroglu

et al., 2017). The methods in this paper and the existing literature are complementary, and for

certain mechanisms they can be combined to estimate the effect of a pre-mechanism intervention

on downstream outcomes. The third restricts attention to mechanisms that have a cutoff rep-

resentation. A mechanism with a cutoff representation computes an individual’s allocation as a

function of their submission to the mechanism and a finite vector of market “prices” that ensure

capacity constraints are not violated. Examples of mechanisms that are truthful and have a cutoff

form include a uniform price auction with single-unit demand and deferred acceptance, as shown

in Azevedo and Leshno (2016). These assumptions have two implications that are important for

identifying and estimating τGTE . First, interference between any two individuals is weak in that

it operates only through the vector of market-clearing prices, and each individual’s impact on the

price decreases with the size of the market. Furthermore, we can estimate outcomes for an agent

under a counterfactual treatment policy as long as we know their submission to the mechanism and

an estimate of the market-clearing cutoffs in that counterfactual.

Although this model simplifies the structure of interference substantially, there remains enough

dependence among individual outcomes that deriving an estimator’s statistical properties in finite

samples is challenging. To make progress, we study estimators under an asymptotic approximation

that observes samples of individuals drawn from a population and takes the sample size n to infinity.

This approximation is reasonable when applied to markets where the number of buyers assigned to

each item is relatively large.1 In the limit, rather than assigning discrete individuals to an item, the

mechanism assigns a non-negligible fraction of the population to each item.2 Our first main result

is that τGTE converges at a
√
n rate to a fixed quantity τ∗GTE as n grows to infinity. τ∗GTE is the

solution to a system of moment conditions defined on the joint distribution of treated and control

submissions to the mechanism. This reduction allows us to leverage the rich literature on moment

condition models with missing data when designing and evaluating estimators of τ∗GTE .3 Our

asymptotic approximation result ensures that a confidence interval with good coverage properties

for τ∗GTE will also perform well for the sample estimand τGTE .

We cannot use the derived moment condition representation to construct an estimator directly,

1For example, in the school choice setting, the class size at each school must not be too small.
2These “continuous” mechanisms have been studied in the microeconomic theory literature; see, for example, the

fractional version of deferred acceptance in Azevedo and Leshno (2016) and applied to the econometrics of school
choice by Agarwal and Somaini (2018) and Bertanha et al. (2023).

3See, for example Wooldridge (2007), Chen et al. (2008) and Graham et al. (2012).
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since it depends on both treated and control submissions to the mechanism, and we only observe one

of these for each individual. To express τ∗GTE in terms of moments of the observed data distribution,

we assume strong overlap and unconfoundedness. Unconfoundedness means that an individual’s

potential submissions to the mechanism are independent of the treatment conditional on observed

covariates. Our primary approach does not require an instrument for the treatment. However, if

an instrument is available, then an alternative identification approach is available, which we discuss

briefly in Appendix B.

Before introducing a new estimator, we describe the properties of two simulation-based estima-

tors of τGTE that use observations of individual-level covariates, treatments, and submissions to

the mechanism. The first, which is common in the economics literature, is to estimate a paramet-

ric model of how a treatment affects reported preferences and run the mechanism separately on

treated and control samples simulated from this model, as in Allende et al. (2019). The second,

which is less common in the applied literature, is to simulate the mechanism separately on sam-

ples re-weighted to be representative of the treated and control population. We show that these

estimators are simulation-based implementations of an outcome-modeling estimator and an inverse

propensity-weighted (IPW) estimator, respectively, the properties of which have been studied in

detail in the literature (Hirano et al., 2003; Wooldridge, 2007). For example, we know that the IPW

estimator is sensitive to errors in the propensity score model, and the outcome-modeling estimator

is biased when the preference model is misspecified. Instead, we propose an estimator that is less

sensitive to errors in modeling, and has a variety of other desirable theoretical properties, which

we call the Localized Debiased Machine Learning (LDML) estimator. This is a new approach for

estimating τGTE using doubly-robust scores. This estimator is based on the LDML theory in Kallus

et al. (2019), who extend Chernozhukov et al. (2018) to quantile-like treatment effects.

The LDML estimator consists of two steps. First, we use an IPW estimator to compute a first-

step estimate of allocations and outcomes under the all-treated and all-control counterfactuals.

Then, using these first-step estimates and flexible machine learning methods, we estimate functions

of expected outcomes and allocations conditional on covariates and treatment. These conditional

mean functions and an estimated set of IPW weights are used to run a perturbed and re-weighted

version of the allocation mechanism on treated and control observations separately. Sample splitting

controls bias in this procedure. We prove that the LDML estimator of τGTE is asymptotically

normal and semi-parametrically efficient under weak conditions on the convergence of the propensity

score estimator and outcome regressions. These rate conditions accommodate a wide range of

flexible machine learning estimators for the propensity score and conditional outcome regressions

that can converge slower than a simple parametric model, but are more likely to capture the relevant

moments of the true data generating process.

We also provide an analytical form for the semi-parametric efficiency bound for regular and

asymptotically linear estimators of τ∗GTE . Compared to the Average Treatment Effect without

interference, the efficiency bound includes additional terms due to variation in the equilibrium

when individuals are sampled from a population. Surprisingly, we find that these additional terms
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can reduce variance, so the general equilibrium effect is often estimated more precisely than a partial

equilibrium effect. A partial equilibrium estimate evaluates an average treatment effect at a single

equilibrium. In contrast, the general equilibrium effect compares the difference in outcomes at two

distinct equilibria; the re-estimation of these equilibrium prices dampens the impact of randomness

in the individual treatment effect on the variance of an estimator of τ∗GTE .

When treatment effects are heterogeneous, a policymaker can improve outcomes by assigning

treatment to a subset of individuals, depending on their pre-treatment covariates, rather than

assigning the treatment either to everybody or nobody. Without interference, then the optimal

treatment rule assigns treatments to those with a positive Conditional Average Treatment Effect

(CATE). Under interference, the CATE is not well-defined. In Section 4, we show that the optimal

treatment rule depends on the sum of two types of heterogeneous treatment effects: heterogeneity

in the impact of the treatment on an individual at a fixed market equilibrium and heterogeneity in

an individual’s impact on others’ allocations through the congestion of the market. Finally, we in-

troduce an empirical welfare maximization-based approach for estimating the outcome-maximizing

treatment rule, which estimates the value of a treatment rule using a doubly-robust approach similar

to the one developed for τGTE .

In two simulations, we show that the LDML estimator has a variety of desirable properties

in finite samples. First, we use a simple simulation of a uniform price auction to illustrate the

robustness properties of the LDML estimator, in contrast to the IPW and outcome modeling

approaches. Next, we use a simulation of a school market with three schools to show that our

confidence intervals for τGTE perform well in finite samples and are over 20% more narrow than

doubly-robust intervals for a partial equilibrium treatment effect.

Finally, we apply our methods in a real-world setting using data from Chile, where a centralized

mechanism (based on deferred acceptance) allocates most children in the country to schools. The

experiment in Allende et al. (2019) randomly allocates detailed information on school quality to

families and uses a parametric model to evaluate whether it increased enrollment of low-income

families at good schools. In this setting, unconfoundedness holds by design, and the LDML esti-

mator provides an approach to estimate the desired treatment effect without relying on a possibly

misspecified utility model.

Since the data from the paper were not available, we instead compile a similar dataset from

public and private data from the Ministry of Education in Chile. This dataset replicates many of

the features of the data in Allende et al. (2019), except that the intervention is the self-reported

receipt of government-provided information on school quality, rather than a randomized interven-

tion designed by the researchers. Assuming that unconfoundedness holds conditional on a set of

demographic covariates, we evaluate τGTE , where the treatment is the receipt of government school

quality information, and the outcome is allocation of low-income families. We find that if equilib-

rium effects are ignored, then the estimate of the impact of the treatment is large and significant,

raising access of low-income families to good schools by nearly 1.5 percentage points. However, an

estimate of the true impact of the intervention that takes into account the impact on the equilib-
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rium of the school market is significantly smaller at 0.5 percentage points. The large bias of the

average treatment effect comes from over-estimating the access of treated families to good schools

relative to the all-treated counterfactual and under-estimating the access of control families to good

schools relative to the all-control counterfactual. There is substantial heterogeneity in treatment

effects in the data. A rule that approximates the optimal targeting rule in equilibrium raises ac-

cess of low-income families to good schools by 1.8 percentage points, substantially outperforming

a uniform rule that allocates the intervention to all families.

1.1 Related Work

There is a body of existing work that estimates different types of causal effects in designed markets.

Abdulkadiroglu et al. (2017) estimate causal effects of allocations on future outcomes, such as test

scores or income, using randomness in the matching mechanism for identification. Abdulkadiroğlu

et al. (2022), Chen (2021), and Bertanha et al. (2023) extend this work to settings where individual

scores are non-random but the cutoff structure of the mechanism allows an RDD analysis. Bertanha

et al. (2023) also considers partial identification of preferences from strategic reports when mecha-

nisms are not strategy proof. In contrast to this body of work, our paper focuses on an earlier step

in the causal chain of events, which is the effect of a pre-allocation intervention on some function

of allocations.

There is a small literature that considers settings with complete interference, where the treat-

ment of each individual can impact the outcomes of any other individual in the sample. Miles et

al. (2019) studies a model where interference occurs only through the proportion treated. They

only consider estimands that are local, so restrict attention to counterfactual treatment policies

that have the same proportion treated as in the observed data. Our paper estimates global causal

effects, where the proportion treated is different from that observed in the data. Bright et al. (2022)

characterize the bias of an RCT in a parametric model of a matching market, where a linear program

computes the matching, so there is complete interference. They propose a simulation-based estima-

tor of τGTE that requires estimating their model using maximum likelihood estimation. Our paper

studies markets with a different class of matching mechanisms, which are truthful and have a cutoff

structure; in this class of mechanisms, we estimate causal effects without imposing a parametric

model of the market.

In a model of randomized experiments in a general market equilibrium, Munro et al. (2023)

showed that market prices can be considered an exposure mapping (Aronow and Samii, 2017; Sävje

et al., 2021). This structure allows Munro et al. (2023) to derive an estimator of causal effects

including an equilibrium effect, but the estimand is local to the current equilibrium, and estimation

requires an experimental design with randomization of prices. A centralized market mechanism

that has a competitive equilibrium representation provides substantial additional structure beyond

a market-clearing condition. This structure allows us to identify a global treatment effect and use

data from a standard randomized experiment (or observational data), neither of which was possible

in Munro et al. (2023).
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To analyze the properties of the estimators in the paper, we use an asymptotic framework where

the allocation mechanism operates on a distribution of agents, rather than a discrete number of

agents. Using large-sample approximations for marketplaces is helpful in characterizing bias and

variance of estimators of treatment effects, see Johari et al. (2022), Bright et al. (2022) and Liao

and Kroer (2023), as well as Munro et al. (2023), for an analysis of A/B testing in various markets

in equilibrium.

2 Defining Global Effects in Designed Markets

There is a two-sided market with n individuals on one side of the market, and J items on the

other side of the market. Agents with observed characteristics Xi ∈ X submit reports Bi ∈ B to

a centralized market mechanism, which assigns them to items. Each individual receives a binary

treatment Wi ∈ {0, 1}, which can impact their submission to the mechanism. The vector of

treatments for all individuals is W ∈ {0, 1}n. In an auction setting, an example intervention is

a new predictive model that affects a buyer’s bid for certain advertising slots. In a school choice

setting, an example intervention is information about school quality that changes students’ ranking

over schools. The potential reports {Bi(1), Bi(0)} allow the effects of the treatment to differ by

individual. We do not need to assume a specific model for how the treatment affects choices. We

assume that each agent {Bi(1), Bi(0), Xi} ∼ F is drawn from some population.

Each item j is associated with a fractional capacity qj , so that for a sample size n, the supply

available is n · qj units. In a designed market, the allocations of an individual to items Di ∈ {0, 1}J

is computed by a centralized mechanism from the vector of realized reports B(W ) ∈ Bn and the

J-length vector of fractional capacities q:

Di(W ) = m(B(W ), q).

Dij = 1 if individual is allocated a unit of item j and is zero otherwise. In a general mechanism,

the effect of the report of individual j on the allocation of individual i is unrestricted. A large class

of matching and auction mechanisms, however, known as cutoff mechanisms, have a competitive

equilibrium representation, as discussed in Azevedo and Leshno (2016) and Agarwal and Somaini

(2018). In a competitive equilibrium, there is still complete interference. However, the report of

individual j only has an impact on the allocation of individual i through a set of market clearing

cutoffs P ∈ S ⊂ RJ . We restrict our attention to cutoff mechanisms:

Definition 1. Cutoff Mechanism. Individual allocations are determined by the function d :

B × S 7→ {0, 1}J :

Di = Di(W ) = d(Bi(Wi), P (W )),

1

n

n∑
i=1

d(Bi(Wi), P (W ))− q = op(n
−1/2).
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An individual’s allocation depends only on their own submission to the mechanism and a set

of market-clearing cutoffs. The cutoffs P are set so that demand is equal to capacity for each

of the J goods.4 We consider outcomes that are a known function of an individual’s report, the

market-clearing cutoffs, and their characteristics, y : B × S ×X 7→ R.

Yi = Yi(W ) = y(Bi(Wi), P (W ), Xi).

An example of an outcome function is one that assigns a match value uj(Xi) for the allocation of

individual i to option j: Yi(W ) =
J∑
j=1

uj(Xi)Dij(W ). This rules out outcomes that are a noisy

function of allocations, such as test scores or future income in the school choice setting. The

estimand of interest is the Global Treatment Effect, which is the average effect on outcomes of

treating everybody compared to treating nobody:

τGTE =
1

n

n∑
i=1

Yi(1)− Yi(0).

Without interference, in settings where SUTVA holds at the outcome level, then τGTE is equiv-

alent to the familiar Average Treatment Effect:

τATE =
1

n

n∑
i=1

Yi(1)− Yi(0).

When allocations are determined by a centralized mechanism, there is interference at the out-

come level, so SUTVA does not hold. The treatment of individual i affects the outcome of individual

j since the mechanism computes allocations based on the submissions of all market participants.

This means that even when treatment is randomly assigned, then estimators for τATE , such as

the differences in average outcomes between treated and control individuals, do not estimate τGTE

(Sävje et al., 2021). However, the cutoff structure of the mechanism, knowledge of the outcome

function, and some weak regularity conditions will allow us to derive asymptotically normal and

efficient estimators of τGTE even in the presence of interference. Assumption 1 formalizes our

restrictions on the properties of the mechanism.

Assumption 1. Assumptions on Mechanism Structure

1. The mechanism is a cutoff mechanism, following Definition 1;

2. At the report level, SUTVA holds. For W and W ′, if Wi = W ′i , then Bi(W ) = Bi(W
′);

3. The outcome function y : B × S ×X 7→ R is bounded;

4. For each p, y(Bi(w), p,Xi) and d(Bi(w), p) are continuous almost everywhere in p. The

function classes Fd = {dj(b, p) : j ∈ [J ], p ∈ S} and Fy = {y(b, p, x) : p ∈ S} are suitably

4The error in the market-clearing condition that decays at op(n
−1/2) accounts for the fact that, in finite samples,

total demand divided by n may be slightly less than fractional capacity q.
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measurable and their uniform entropy number obeys, for all 0 ≤ ε ≤ 1,

sup
Q

logN(ε||F̄d||Qd,2,Fd, L2(Qd)) ≤ v log(a/ε),

sup
Q

logN(ε||F̄y||Qy ,2,Fy, L2(Qy)) ≤ v log(a/ε),

where the supremum is taken over all probability measures Qd and Qy for which the classes

Fd and Fy are not identically zero and F̄d and F̄y are each a given envelope function;

5. P ∈ S, where S is a compact set.

The first assumption indicates that the allocation rule of the mechanism takes a competitive

equilibrium form. There is still interference, in that the treatment of individual j impacts in-

dividual i through the counterfactual market-clearing cutoffs, but the interference is structured

in that it only occurs through the aggregate statistic P (w). This is an example of the type of

interference studied in the context of experiments in markets in Munro et al. (2023). However,

the centralized mechanism imposes additional structure on demand and supply beyond restricting

interference, which will allow us to estimate global counterfactuals, which was not possible in the

previous paper. The second assumes that there are no spillover effects at the report level, which

rules out standard network-type spillovers, such as a treated individual sharing information with

an untreated neighbor. The assumption also implies that submissions to the mechanism cannot be

chosen strategically based on individual expectations of the market-clearing cutoffs P (W ). Mech-

anisms that are strategyproof, such as Vickrey auctions or deferred acceptance, lead to individual

choices of Bi that meet the SUTVA condition. Assuming that the outcomes of interest are finite

is reasonable in all practical settings that we have considered. The fourth part of the assumption

makes a Donsker-type assumption on the demand and outcome functions with respect to p. The

structures of many mechanisms lead to demand functions that are made up of indicator functions,

which are not continuous everywhere. The Donsker assumption is a weak condition, under which

the results in the paper hold even for settings where there is some discontinuity in demand and

outcome functions. Lastly, we assume that prices lie within a compact set. At the end of this

section we will provide examples showing that the uniform price auction and deferred acceptance

meet all of these assumptions.

We can define the market-clearing cutoffs under treatment and control for a given sample as:

op(n
−1/2) =

1

n

n∑
i=1

d(Bi(1), P (1))− q

op(n
−1/2) =

1

n

n∑
i=1

d(Bi(0), P (0))− q

Under Assumption 1, we can write τGTE in terms of these counterfactual cutoffs.
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τGTE =
1

n

n∑
i=1

y(Bi(1), P (1), Xi)− y(Bi(0), P (0), Xi)

To estimate τGTE , we can’t observe both P (1) and P (0) simultaneously in a single sample

of data. In general, we observe neither counterfactual. Instead, under assumptions on the data

generating process, we will show that it is possible to estimate these cutoffs using observational data

satisfying an unconfoundedness assumption. To evaluate the performance of various estimators and

define a variance-minimizing estimator, we choose to make an asymptotic approximation that is

common in the theory literature on comparative statics for mechanisms. We consider an asymptotic

framework where n grows but J remains fixed. This is reasonable in settings where the number of

agents assigned to each good j ∈ {1, . . . , J} is not too small. In the limit, a “fractional” mechanism

allocates a fraction of a population-level distribution to a fixed number of items.

We can define counterfactual market-clearing cutoffs p∗1 and p∗0 for the population as follows:

E[d(Bi(1), p∗1)− q] = 0,

E[d(Bi(0), p∗0)− q] = 0,

where the expectation is taken over the population F from which the individual potential reports

and characteristics {Bi(1), Bi(0), Xi} are sampled. Assumption 2 provides regularity conditions at

the population level.

Assumption 2. Population-Level Assumptions

1. p∗w is the unique solution to E[d(Bi(w), p∗w)] = q, for w ∈ {0, 1},

2. p∗0 ∈ int(S) and p∗1 ∈ int(S),

3. For w ∈ {0, 1}, µdw(p, x) = E[d(Bi(w), p)|Xi = x] and µyw(p, x) = E[y(Bi(w), p,Xi)|Xi = x]

are twice continuously differentiable in p with bounded first and second derivatives,

4. ∇pE[d(Bi(w), p)]|p=p∗w is non-singular for w ∈ {0, 1}.

The first assumption requires that the counterfactual cutoffs are the unique solution to the

population market-clearing condition. Under simple conditions on primitives, the mechanisms

considered in this paper have a unique solution in the limit. The assumption that the cutoffs are

in the interior of the compact set S is straightforward to satisfy when the reports are bounded, see

the examples in Section 2.1 and 2.2. The third assumption imposes smoothness assumptions on the

demand and outcome functions. Although at an individual level we allow for some discontinuity

such as step functions, at a population-level the demand and outcome functions conditional on Xi

must be sufficiently smooth.

Under these regularity assumptions, we can analyze the asymptotic behavior of τGTE .

Theorem 1. Under Assumption 1- 2,

10



√
n(τGTE − τ∗GTE)→d N(0,Σ),

τ∗GTE and the counterfactual cutoffs p∗0 and p∗1 are defined by a set of 2J + 1 moment conditions:

0 = E[y(Bi(1), p∗1, Xi)− y(Bi(0), p∗0, Xi)]− τ∗GTE
0 = E[d(Bi(1), p∗1)− q]

0 = E[d(Bi(0), p∗0)− q]

(1)

We prove Theorem 1 and provide a formula for Σ in Appendix A.2. τGTE , a global causal effect

defined under interference, converges at a
√
n rate to τ∗GTE .5 In finite samples, there is interference

among everyone in the sample, but the dependence between two individuals becomes increasingly

weak as the market size grows large. In the limit, there is no interference. Instead, τ∗GTE can be

defined in terms of a moment condition based on the marginal distributions of Bi(1) and Bi(0),

where the moments are evaluated at the limiting counterfactual cutoffs p∗0 and p∗1. Before describing

an estimation strategy that builds on this moment representation of τ∗GTE , we first provide some

examples of centralized allocation mechanisms that meet Assumptions 1 and 2.

2.1 Uniform Price Auction

In a uniform price auction with a single good and unit demand, the report to the mechanism is a

bid, which may be affected by the treatment. Bi(Wi) = Vi(Wi), and Vi(w) ∼ Fv,w. When there are

m units for sale in the auction, the winning bidders pay the (m + 1)th highest bid. Formally the

allocation rule is d(Bi(Wi), P ) = 1(Bi(Wi) > P ), and the market-clearing price satisfies

op(n
−1/2) =

1

n

n∑
i=1

d(Bi(Wi), P )− q,

with q = m/n. We assume that individuals have independent private values for the item, which

may be affected by the treatment. Under this assumption, the optimal strategy is to bid that value,

and the first part of Assumption 1 at the report level holds.

Proposition 2 verifies that the remaining assumptions on the mechanism are satisfied by d(b, p) =

1(b > p), under restrictions on the distribution of the value under treatment and control. For

outcome functions that are a linear function of allocations, such as the surplus measure in Section

5, then the required conditions on the outcome function follow from the assumptions on the value

distribution and it is not necessary to assume them separately.

Proposition 2. Assume that 0 < q < 1. Let Vi(Wi) ∈ [V −, V +] ⊂ R where V − and V + are finite.

1. For all x ∈ X , the conditional CDF of the value distribution, Fv(w),x(v|x), is twice continu-

ously differentiable in v for w ∈ {0, 1}, with bounded first and second derivatives.

5This result implies that confidence intervals for the population estimand τ∗GTE will be conservative for the sample
estimand τGTE .
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2. The unconditional distribution Fv(w)(v) is strictly monotonic on [V −, V +].

3. Assume that the outcome function y(b, p, x) meets part 3 and 4 of Assumption 1 and part 3

of Assumption 2.

Then, Assumption 1 and 2 hold when allocations are determined by a Uniform Price Auction.

The proof is in Appendix A.5.

2.2 Deferred Acceptance with Lottery Priority

In this example, we consider the deferred acceptance algorithm, which is often used to assign

students to schools. The discussion here also applies to other settings, such as the residency

match, where a version of deferred acceptance is used. Students submit a ranking over schools

Ri(Wi), where jRi(Wi)j
′ is 1 if school j is ranked above school j′, and zero otherwise. There is a

treatment, such as an information intervention, that affects the rankings that a student submits.

We consider a version of deferred acceptance where each student is assigned an independent lottery

number Sij ∼ Fs drawn for each school. j = 1, . . . , J index the capacity-constrained schools, and

j = 0 indexes an outside option that does not have a capacity constraint. The rankings submitted

include preferences over both capacity and non-capacity constrained schools. The J-dimensional

market-clearing cutoffs for the capacity-constrained schools are determined by a J-dimensional

market-clearing condition:

op(n
−1/2) =

1

n

n∑
i=1

d(Bi(Wi), P )− q

The cutoffs for the non-constrained schools are 0. The demand function that formalizes the

deferred acceptance mechanism in a competitive equilibrium framework (Azevedo and Leshno, 2016;

Agarwal and Somaini, 2018) is given below:

d(Bi(w), p) = 1{Sij > pj , jRi(Wi)0}
∏
j 6=j′

1(jRi(Wi)j
′ or Sij′ < pj′),

where the report to the mechanism Bi(W ) = {Ri(Wi), Si} includes both the rankings submitted

by the individual that are affected by the treatment, as well as the lottery numbers, which are

not controlled by the individual. The SUTVA assumption on Bi(Wi) implies that a student’s

submissions to the mechanism do not depend on the treatment status of other students. This

holds, for example, under conditions where deferred acceptance is strategy-proof, and students

submit complete lists over schools. In settings with informational spillovers or where the list

submitted to DA is very short, then it may be that there is also interference at the report level.

An example of an outcome function that is useful to evaluate is one that assigns a match value

to each student-school pair, depending on the characteristics of the student and the identity of the

school:

12



y(Bi(w), p, x) =

J∑
j=0

dj(Bi(w), p)uj(Xi).

Deferred Acceptance can be considered as a multiple-good extension of the uniform price auc-

tion. Under restrictions on the distribution of the lottery numbers, then we can extend Proposition

2 to show that deferred acceptance also meets Assumption 1 and 2, see Proposition 3. For outcome

functions that are a linear combination of allocations, as in Section 6, then the required conditions

on the outcome function follow from the assumptions on the score distribution.

Proposition 3. Assume that
J∑
j=1

qj < 1. For each j, let Sij(Wi) ∈ [S−, S+] ⊂ R where S− and

S+ are finite.

1. For all x ∈ X , the conditional CDF of the score distribution, Fs,x(s|x), is twice continuously

differentiable in s for w ∈ {0, 1}, with bounded first and second derivatives.

2. The unconditional distribution Fs(s) is strictly monotonic on [S−, S+].

3. Assume that the outcome function y(b, p, x) meets part 3 and 4 of Assumption 1 and part 3

of Assumption 2.

Then, Assumption 1 and 2 hold when allocations are determined by Deferred Acceptance

The proof is in Appendix A.6.

3 Estimating the Global Treatment Effect

The moments in Equation 1 are infeasible to estimate directly in that they depend on both Bi(1)

and Bi(0), which are not observed simultaneously for any individual. Under the following uncon-

foundedness and overlap assumptions, we can identify τ∗GTE using moment conditions that depend

only on the observed data (Bi(Wi),Wi, Xi).

Assumption 3. Selection on Observables

1. Overlap holds. Let e(x) = Pr(Wi = 1|Xi = x). For all x ∈ X , 0 < e(x) < 1.

2. Unconfoundedness holds. {Bi(1), Bi(0)} ⊥⊥Wi|Xi,

It is possible to use an IV-type assumption as an identifying condition instead, as discussed

briefly in Appendix B. Theorem 1 shows that asymptotically, the global treatment effect can be

represented as the solution to a moment condition model with missing data. Under Assumption 3,

there are many different estimating equations that can be constructed from Equation 1. We start

by briefly describing how two intuitive methods for estimating τGTE can be understood as versions

of an outcome-modeling estimator and a propensity-score estimator. We provide some brief insights

into the pitfalls of these methods by applying existing results from the literature on propensity score
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and structural model-based estimators for parameters defined by moment conditions with missing

data.

After discussing the two existing methods, we turn to a new method based on a doubly-robust

estimating equation and the theory in Kallus et al. (2019). Algorithmically, this estimator runs

a perturbed and re-weighted version of the allocation mechanism on the observed data, where

the weights and perturbations are estimated using flexible machine learning methods. The main

result of this section is Theorem 4, which establishes the asymptotic normality and semi-parametric

efficiency of the proposed estimator.

3.1 Structural Modeling Approach

We start with a discussion of how a parametric model of individual ranking behavior can be used

to estimate τGTE , before turning to non-parametric approaches. First, we introduce notation

for the expected outcomes and allocations, given fixed market-clearing cutoffs and conditional on

covariates.

µdw(p, x) = E[d(Bi(w), p)|Xi = x], µdw(p) = E[µdw(p,Xi)],

µyw(p, x) = E[y(Bi(w), p,Xi)|Xi = x], µyw(p) = E[µyw(p,Xi)].

Under Assumption 3, we can identify τ∗GTE using the conditional mean functions:

0 = E[µy1(p∗1, Xi)− µy0(p∗0, Xi)]− τ∗GTE ,

0 = E[µd1(p∗1, Xi)− q], 0 = E[µd0(p∗0, Xi)− q].
(2)

To solve an empirical version of the score condition, we need an estimate of the conditional

mean allocation functions for values of p that are not observed in the data. One way it is feasible to

construct such an estimate is through a structural model, which assumes a parametric model of the

distribution of individual submissions to the mechanism, conditional on covariates and treatment.

For example, in the school choice setting Allende et al. (2019) assume that families rank schools in

increasing order of their utility, where utility depends on school and family characteristics, a random

noise term, and the parameters of the utility model depend on the treatment. Let Bi(w)|Xi = x

have distribution F bw(b|x; θw), where the distribution is parameterized by some real-valued vector

θw. For any cutoff p ∈ S, we can then define expected outcomes and allocations conditional on

covariates in terms of this distribution:

µyw(p, x; θw) =

∫
y(b, p, x)dFBw (b|x; θw), µdw(p, x; θw) =

∫
d(b, p)dFBw (b|x; θw).

Then, we solve an empirical version of the score condition in Equation 2 using an estimated

structural model. First, we estimate the parameters θ̂1 of the distribution using the empirical

distribution of Bi|Xi for observations with Wi = 1. Then, θ̂0 is estimated using the empirical

distribution of Bi|Xi for observations with Wi = 0. The estimated conditional mean functions

µ̂dw(p, x) =
∫
d(b, p)dFBw (b|x; θ̂w) and µ̂yw(p, x) =

∫
y(b, p, x)dFBw (b|x; θ̂w) are moments of these esti-
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mated distributions.

τ̂MGTE =
1

n

n∑
i=1

µ̂y1(P̂M1 , Xi; θ̂1)− µ̂y0(P̂M0 , Xi; θ̂0),

1

n

n∑
i=1

µ̂d1(P̂M1 , Xi; θ̂1) = q,
1

n

n∑
i=1

µ̂d0(P̂M0 , Xi; θ̂0) = q.

(3)

If the parametric model is correctly specified, then this approach is asymptotically linear and

efficient. The advantage of this approach is once the model of individual choices is specified and

estimated, a variety of counterfactuals can be evaluated, including those that are more complex

than the estimand considered in this paper. The downside of this approach is if the model is not

correctly specified, then the estimator of τ∗GTE will be asymptotically biased. Unfortunately, it can

be challenging to specify a parametric model that captures the complexity and heterogeneity of

individual choice behavior. It is especially challenging in settings where the possible submissions to

the mechanism are high-dimensional. In school choice settings, for example, the number of possible

submissions to the mechanism is exponential in the number of schools. Next, we introduce an

alternative approach based on propensity scores that does not require a parametric model of the

distribution of submissions to the mechanism.

3.2 Propensity Score Approach

Another identification approach based on Assumption 3 and Theorem 1 uses the distribution of

observed submissions to the mechanism and the propensity score, e(x) = Pr(Wi = 1|Xi = x),

rather than a structural model of submissions to the mechanism.

τ∗GTE = E
[
Wiy(Bi, p

∗
1, Xi)

e(Xi)
− (1−Wi)y(Bi, p

∗
0, Xi)

1− e(Xi)

]
,

q = E
[
Wid(Bi, p

∗
1)

e(Xi)

]
, q = E

[
(1−Wi)d(Bi, p

∗
0)

1− e(Xi)

]
.

(4)

To define an estimator based on these moment conditions, it is useful to introduce notation for a

mechanism that is run on a re-weighted sample of the observed data. For a vector of weights γ

of length n and J-length vector of fractional capacities q, the cutoffs Pγ,q clear the market for a

re-weighted sample:

q + op(n
−1/2) =

n∑
i=1

γid(Bi, Pγ,q). (5)

The observed market-clearing cutoffs P (W ) come from a mechanism run with uniform weights

γi = 1/n. To estimate counterfactual market-clearing cutoffs using the observed data, we can simu-

late a weighted mechanism with non-uniform weights, where the weights depend on the propensity

score, as follows:
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1. Estimate ê(x) using observed (Wi, Xi) for i ∈ {1, . . . , n}. Let γ̂1
i = Wi

nê(Xi)
and γ̂0

i = 1−Wi
n(1−ê(Xi)) ;

2. Run the re-weighted mechanism to estimate counterfactual cutoffs: Pγ̂1,q and Pγ̂0,q;

3. Get an IPW-estimate of the treatment effect at these counterfactual cutoffs:

τ̂ IPWGTE =
n∑
i=1

γ̂1
i y(Bi, Pγ̂1,q, Xi)− γ̂0

i y(Bi, Pγ̂0,q, Xi). (6)

The propensity score is used in two steps: first, to estimate counterfactual market equilibria and

second, to estimate average outcomes in these counterfactual equilibria using observed submissions

to the mechanism, covariates, and the known outcome function y(·). Under the identification con-

ditions, τ̂ IPWGTE is consistent for τ∗GTE when the estimated propensity score ê(x) is consistent for e(x).

Asymptotic normality and semi-parametric efficiency of the estimator depend on the smoothness of

the propensity score function and the rate of convergence of the estimator of the propensity score,

as shown in Hirano et al. (2003) for the Average Treatment Effect. Although under restrictive

conditions on smoothness and convergence rates the propensity score estimator can be efficient,

in general the specific estimator used for e(x) impacts estimator bias and confidence interval con-

struction. Even when the propensity score is known, estimators that use an estimated propensity

score conditional on covariates can have a lower variance, by balancing covariate mismatch between

treated and control samples. Graham et al. (2012) includes a broader discussion of the limitations

of the IPW approach in moment condition models with missing data. The advantage of the propen-

sity score approach is that it does not require estimating a model of submissions to the mechanism

conditional on covariates, which can be a high-dimensional object.

We are now ready for the main contribution of this section, an estimator that combine the model-

based and propensity-score based approaches, and is less sensitive to errors in the estimation of the

nuisance parameters e(·), µdw(·), and µyw(·). Furthermore, the proposed approach uses a localization

technique to estimate µdw and µyw without modeling the distribution of reports conditional on

covariates.

3.3 Doubly-Robust Approach

A third identifying equation for τ∗GTE is based on a doubly-robust score, which is Neyman-orthogonal

with respect to the propensity score and the conditional mean functions.

τ∗GTE = E
[
µy1(p∗1, Xi)− µy0(p∗1, Xi) +

Wi(y(Bi, p
∗
1, Xi)− µy1(p∗1, Xi))

e(Xi)
− (1−Wi)(y(Bi, p

∗
0, Xi)− µy0(p∗0, Xi))

1− e(Xi)

]
0 = E

[
µd1(p∗1, Xi) +

Wi(d(Bi, p
∗
1)− µd1(p∗1, Xi))

e(Xi)
− q
]

0 = E
[
µd0(p∗0, Xi) +

(1−Wi)(d(Bi, p
∗
0)− µd0(p∗0, Xi))

1− e(Xi)
− q
]

(7)
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An estimator using the empirical version of this score condition can be constructed using a

Double Machine Learning (DML) based approach, as described in Chernozhukov et al. (2018),

with data splitting and suitable estimators for µdw(p, x), µyw(p, x), e(x) for all p ∈ S and w ∈ {0, 1}.
If a structural model of the distribution of Bi(w)|Xi = x is used for the estimators µ̂dw(p, x) and

µ̂yw(p, x), as described in Section 3.1, then as long as the propensity score estimator is consistent,

then the DML estimate of τ∗GTE is consistent. This implies that the DML approach can be used to

construct a treatment effect estimate that is robust to specification errors when using a parametric

structural model of mechanism reports. However for asymptotic normality and
√
n consistency, the

conditions of Chernozhukov et al. (2018) require that both the propensity score estimator and the

conditional mean estimators are consistent and that the product of their convergence rates must be

o(n−1/2). In settings where it is difficult to specify a correct parametric model, it is desirable to use

a more flexible model for the distribution of Bi(w)|Xi = x. When there are more than a handful

of continuous covariates, it becomes infeasible to find a flexible model of the entire conditional

distribution that meets the convergence rate conditions in Chernozhukov et al. (2018). The LDML

estimator introduced in Definition 2 and based on the theory of Kallus et al. (2019) relies only on

flexible regression methods, so it does not require estimating any model of individual submissions

to the mechanism, yet it is still asymptotically normal and semi-parametrically efficient.

Definition 2. LDML Estimator

1. Randomly split the dataset into K = 3 folds. Let k(i) be the fold of observation i, for

i ∈ {1, . . . n}. For fold k ∈ {1, 2, 3}, estimate nuisances using data in the other two folds,

labelled k′ and k′′. nk, n
′
k, and n′′k describe the number of observations in the three splits.

• On data in fold k′, compute a first step cutoff estimate P kγ̄1,q and P kγ̄0,q, using estimated

weights γ̄1
i = Wi

n′k ē(Xi)
and γ̄0

i = 1−Wi
n′k(1−ē(Xi)) . ē(Xi) is estimated using (Wi, Xi) in fold k′.

• On data in fold k′′, estimate the propensity score êk(Xi) using (Wi, Xi).

• On data in fold k′′, estimate the conditional mean functions using a flexible regression:

– Estimate µ̂y,kw (Xi) for w ∈ {0, 1} by regressing y(Bi, P
k
γ̄w,q, Xi) on (Xi,Wi),

– Estimate µ̂d,kw (Xi) for w ∈ {0, 1} by regressing d(Bi, P
k
γ̄w,q, Xi) on (Xi,Wi).

2. Using the full sample, compute a second-step estimate of cutoffs Pγ̂1,q̃1 and Pγ̂0,q̃0 , by running

the mechanism with estimated weights γ̂1
i = Wi

nêk(i)(Xi)
and γ̂0

i = 1−Wi

n(1−êk(i)(Xi))
for i ∈ {1, . . . , n}

and perturbed capacities

q̃1 = q +
1

n

n∑
i=1

(
nγ̂1

i − 1
)
µ̂
d,k(i)
1 (Xi),

q̃0 = q +
1

n

n∑
i=1

(
nγ̂0

i − 1
)
µ̂
d,k(i)
0 (Xi).
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3. Using the full sample, estimate the Global Treatment Effect using doubly-robust scores:

τ̂LDML
GTE =

1

n

n∑
i=1

Γ̂1,y
i (Pγ̂1,q̃1)− Γ̂0,y

i (Pγ̂0,q̃0),

Γ̂1,y
i (p) = µ̂

y,k(i)
1 (Xi) + nγ̂1

i (y(Bi, p,Xi)− µ̂y,k(i)
1 (Xi)),

Γ̂0,y
i (p) = µ̂

y,k(i)
0 (Xi) + nγ̂0

i (y(Bi, p,Xi)− µ̂y,k(i)
0 (Xi)).

(8)

As described at the beginning of this section, the moment condition in Equation 7 depends on

conditional mean functions defined at p∗1 and p∗0, which are unknown market-clearing cutoffs that

are also estimated from the data. Kallus et al. (2019) uses the example of quantile treatment effects

to extend the DML approach to handle this type of problem, where nuisance functions may depend

on an estimated parameter. The algorithm in Definition 2 creates an estimator for τ∗GTE that can

be analyzed using the theory in Kallus et al. (2019).

Data are split at least three ways, rather than two ways as in DML. For each split of data,

doubly-robust scores are computed using nuisance functions estimated on the other two splits of

data. One of these is used for a first stage IPW estimate of the market-clearing cutoffs under

treatment and control. The other is used for estimates of the propensity score and a single set

of conditional mean functions. These estimated conditional mean functions are constructed via

flexible regressions of outcomes and allocations computed at the IPW cutoff estimates, rather than

from a model of submissions to the mechanism. Then, the treatment effect is estimated in two

steps. First, using conditional mean functions for allocations and the estimated propensity score,

we run a perturbed and re-weighted version of the centralized allocation mechanism to estimate

counterfactual market-clearing cutoffs. Then, the global treatment effect is estimated using a

doubly-robust score evaluated at these counterfactual cutoffs. For this procedure to lead to an

asymptotically normal and semi-parametric efficient estimator, we require the following restrictions

on the nuisance function estimation:

Assumption 4. Assumptions on Nuisance Estimation: Let µ̂kw(x) be a J + 1 vector of

functions that concatenates µ̂y,kw (x) and µ̂d,kw (x). With probability 1 −∆n, where ∆n = o(1), then

for each split k ∈ {1, . . .K},

1. The estimated propensity score is bounded away from 0 and 1: For ε > 0, supx∈X ||ê(k)(x)−
0.5|| ≤ 0.5− ε;

2. For any sequence of constants ∆n → 0, the nuisance estimates (µ̂(k)(·), ê(k)(·)) belong to the

realization set Tn with probability at least 1−∆n. For w ∈ {0, 1},

||(E(µ̂kw(Xi)− µ(P kγ̄w,q, Xi))
2)1/2|| ≤ ρµ,n (9)

(E(êk(Xi)− e(Xi))
2)1/2 ≤ ρe,n (10)

||Pγ̄w,q − p∗|| ≤ ρθ,n, (11)
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where ρe,n(ρµ,n + Cρθn) ≤ ε3

3 δnn
−1/2, ρe,n ≤ δ3n

logn , ρµ,n + Cρθ,n ≤ δ2n
logn , δn ≤ 4C2

√
d+2ε
ε2

, and

δn ≤ min
{

ε2

8C2d
log n,

√
ε3

2C
√
d

log1/2 n
}

. Furthermore, the nuisance realization set contains

the true nuisance parameters (µw(p∗w, ·), e(·)).

Up to factors that are polynomials of logarithms of n, Assumption 4 requires that the pairwise

product of the rates of mean-square-consistency of the initial estimator of the counterfactual cutoffs,

the propensity score, and the outcome function are o(n−1/2) and that each nuisance parameter is

also consistent. When the initial estimator of the counterfactual cutoffs uses the same propensity

score estimator as êk(·), then this set of assumptions can be simplified to drop (11). Then, we

only require consistency of the conditional mean estimator and consistency of the propensity score

estimator at a o(n−1/4) rate, and the product of their rates of convergence must be o(n−1/2).6

For the conditional mean functions, we are no longer required to estimate the entire conditional

distribution of reports Bi(w)|Xi for w ∈ {0, 1}. Instead, we estimate 2J+1 regressions of outcomes

and allocations evaluated at the first-stage estimate of the market-clearing cutoffs on treatment

and covariates. In this setting, it is reasonable that a flexible machine learning method, such as a

neural network or a random forest, would meet the o(n−1/4) rate condition. The main result of this

section is that the algorithm described leads to an asymptotically normal and semi-parametrically

efficient estimator, when data is generated from an intervention in a designed market, and the

estimand of interest is the global treatment effect.

Theorem 4. Under Assumptions 1 - 4, τ̂LDML
GTE is asymptotically normal with variance V ∗, which

will be described in Theorem 5:

√
n(τ̂LDML

GTE − τ∗GTE)→D N(0, V ∗).

The proof, in Appendix A.4, maps the algorithm in Definition 2 to the LDML framework and

verifies the conditions of the main theorem in Kallus et al. (2019). V ∗ also matches the semi-

parametric efficiency bound for the estimation of τ∗GTE under our identification assumptions, which

we derive in the theorem below:

Theorem 5. Semi-Parametric Efficiency Under the assumptions of Theorem 1 and Assump-

tion 3, the semi-parametric efficiency bound for τ∗GTE is equal to

V ∗ = Var[q(Xi)] + E
[
σ2

0(Xi)

1− e(Xi)

]
+ E

[
σ2

1(Xi)

e(Xi)

]
,

6See Appendix C of Kallus et al. (2019) for more details
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where

q(Xi) = µy1(p∗1, Xi)− ν>1 (µd1(p∗1, Xi)− q)− µy0(p∗0, Xi) + ν>0 (µd0(p∗0, Xi)− q)

σ2
0(Xi) = E

[(
y(Bi(0), p∗0, Xi)− µy0(p∗0, Xi)− ν>0 (d(Bi(0), p∗0)− µd0(p∗0, Xi)

)2|Xi

]
σ2

1(Xi) = E
[(
y(Bi(1), p∗1, Xi)− µy1(p∗1, Xi)− ν>1 (d(Bi(1), p∗1)− µd1(p∗1, Xi)

)2|Xi

]
ν0 = [∇pE[d(Bi(0), p∗0)]]−1∇pE[y(Bi(0), p∗0, Xi)]

ν1 = [∇pE[d(Bi(1), p∗1)]]−1∇pE[y(Bi(1), p∗1, Xi)]

The proof of this theorem is in Appendix A.3. The proof follows uses the methodology presented

in Bickel et al. (1993) and Newey (1990). The organization and notation of the proof is similar to

other papers that apply this methodology to related estimands, including Hahn (1998) and Hirano

et al. (2003) for average treatment effects, Firpo (2007) for quantile treatment effects, and Chen

and Ritzwoller (2021) for long-run treatment effects. Our presentation and notation is closest to

that of Firpo (2007). This bound applies whether or not the propensity score is known, so it also

applies in settings where the data is generated from a randomized experiment.

Due to the market-clearing cutoffs, the efficiency bound for τ∗GTE looks different than that of

the Average Treatment Effect without interference. The bound for the ATE matches the bound for

τ∗GTE when both ν0 = 0 and ν1 = 0, which occurs if the outcomes do not depend on the market-

clearing cutoffs. The minimum asymptotic variance of an estimator also includes a component due

to variation in treatment effects when a sample is drawn from a population and a component due to

variation in the equilibrium that is reached in the allocation mechanism. When these components

are negatively correlated with the noise from the sampling of outcomes, then confidence intervals

that account for noise in the equilibrium effect will be tighter than those that ignore equilibrium

effects.7 We see that this is the case both in the simulations in Section 5 and in the empirical

example of Section 6.

3.4 Confidence Intervals

We can use the analytical form of the variance in Theorem 5 to compute a plug-in variance estimator

that is consistent for V ∗.

7For example, assume a binary treatment raises the values of bidders in a Uniform Price Auction, and the
outcome is bidder surplus. The variance in individual treatment effects contributes directly to the variance of a
partial equilibrium treatment effect estimator. However, a GTE estimator also estimates the equilibrium price at
treatment and control. To respect the capacity constraint in the auction, a sample with a higher average treatment
effect will also have a higher estimated market price under treatment, which can dampen the impact of variance in
treatment effects on the estimated GTE and reduce variance.
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V̂ = V̂ar[Q̂1,i − Q̂0,i], Q̂w,i = Γ̂yw,i(Pγ̂w,q̃w)− ν̂>w [Γ̂d,wi (Pγ̂w,q̃w)− q]

Γ̂1,d
i (p) = µ̂

d,k(i)
1 (Xi) + nγ̂1

i (d(Bi, p)− µ̂d,k(i)
1 (Xi)),

Γ̂0,d
i (p) = µ̂

d,k(i)
0 (Xi) + nγ̂0

i (d(Bi, p)− µ̂d,k(i)
0 (Xi)).

Using this estimated variance and the LDML estimate, we can construct Wald-like confidence

intervals for τ∗GTE . The estimated doubly-robust scores for outcomes are defined in Equation 8.

The estimate of νw = [∇pE[d(Bi(w), p∗w)]]−1∇pE[y(Bi(w), p∗w, Xi)] can be computed using a finite-

differencing approach by perturbing the cutoffs around their estimated counterfactual values Pγ̂1,q̃1
and Pγ̂0,q̃0 and observing how a doubly-robust estimate of average allocations and outcomes changes.

Under weak regularity conditions, the consistency of V̂ and asymptotic validity of confidence in-

tervals based on V̂ is established in Theorem 4 of Kallus et al. (2019).

In this section, under Assumption 3, we briefly discussed the properties of estimators for τ∗GTE
based structural modeling and inverse propensity score weighting, before introducing a new ap-

proach. This approach is computationally simple and does not require modeling individual sub-

missions to the mechanism, which can be a complex task in settings such as school choice where

the space of possible submissions is very large. The LDML estimator is asymptotically efficient

and meets the semi-parametric efficiency bound for τ∗GTE . The bound itself provides some insights

on how confidence intervals for general equilibrium treatment effects can be more narrow than

intervals for partial equilibrium effects.

4 Targeting in Designed Markets

So far, the paper has considered estimation and inference for a single treatment effect, τGTE , that

compares outcomes for two uniform policies, which assign everybody in a sample to treatment, or

nobody. In this section, we consider a class of policies that assign an intervention to a subset of

the sample, conditional on pre-treatment covariates. When treatment effects are heterogeneous,

a targeting rule can substantially improve outcomes compared to a uniform rule. We show that

spillovers that occur through the centralized mechanism have an impact on the structure of the

optimal treatment rule and its estimation.

4.1 Optimal Treatment Rules

A candidate treatment rule π : X → [0, 1] is a function that allocates an intervention conditional

on pre-treatment covariates, so π(x) = Pr(Wi = 1|Xi = x). There is a large literature on optimal

targeting that largely focuses on settings without interference. In the absence of interference, and

without any constraints on the targeting rule, the optimal rule assigns treatment to those with

positive Conditional Average Treatment Effect (CATE), where the CATE is defined as E[Yi(1) −
Yi(0)|Xi = x].
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Under interference, the CATE is not well-defined, so Munro et al. (2023) introduces definitions

of the Conditional Average Direct Effect (CADE) and Conditional Average Indirect Effect (CAIE)

instead. The CADE is the expected effect of treating individuals with a certain covariate value

on their own outcomes. The CAIE is the expected effect of treating individuals with a certain

covariate value on everyone else’s outcomes. Theorem 9 of Munro et al. (2023) implies that in the

large sample limit, when treatments are allocated according to π(·), the CADE and the CAIE take

the following form in our model:

τ∗CADE(x, π) = E[y(Bi(1), p∗π)− y(Bi(0), p∗π)|Xi = x]

τ∗CAIE(x, π) = −ν>π E[d(Bi(1), p∗π)− d(Bi(0), p∗π)|Xi = x].
(12)

where p∗π is the asymptotic market clearing cutoffs under the treatment rule:

E[π(Xi)d(Bi(1), p∗π) + (1− π(Xi))d(Bi(0), p∗π)] = q,

and νπ = ∇pE[d(Bi(Wi), p
∗
π)]−1∇pE[y(Bi(Wi), p

∗
π, Xi)] when Wi ∼ Bernoulli(π(Xi)). Munro et al.

(2023) derive the outcome-maximizing treatment rule under the constraint that the rule induces

the same equilibrium as the observed data. In this paper, we are interested in characterizing and

estimating the treatment rule that is outcome-maximizing in equilibrium.

Define the space of candidate treatment rules Π as all measurable functions from X to [0, 1].

Let the optimal rule maximize outcomes in the large sample limit:

π∗ = arg max
π∈Π

V (π) = arg max
π

E[π(Xi)(y(Bi(1), p∗π, Xi)− y(Bi(0), p∗π, Xi))],

Theorem 6. Assume Π is a vector space. Any optimal rule π∗ meets the following score condition

almost surely for x ∈ X :

1. π∗(x) = 1, and τ∗CADE(x, π∗) + τ∗CAIE(x, π∗) > 0, or

2. π∗(x) = 0, and τ∗CADE(x, π∗) + τ∗CAIE(x, π∗) < 0, or

3. 0 ≤ π∗(x) ≤ 1, and τ∗CADE(x, π∗) + τ∗CAIE(x, π∗) = 0.

When Xi is discrete, vπ = τ∗CADE(x, π) + τ∗CAIE(x, π) is the derivative of the objective function

with respect to π(x). Theorem 6 indicates that any optimal rule must satisfy a set of necessary

conditions that depend on the gradient of the objective function with respect to the targeting rule.

The first component of the derivative takes into account the direct impact of raising π(x) through

changes in the reports to the mechanism for individuals with covariates Xi = x. The second

component of the derivative takes into account the indirect impact of raising π(x) that occurs

through changes in the market-clearing cutoffs that result from aggregate changes in submissions

to the mechanism.
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4.2 Approximating the Optimal Treatment Rule

We can use Theorem 6 to estimate an outcome-improving targeted rule that requires estimating a

single set of conditional average treatment effects on a constructed pseudo-outcome at the observed

equilibrium, where treatment is assigned according to e(x).

1. Estimate νe using a numerical differencing approach: perturb the observed market-clearing

cutoffs P (W ) and evaluate how allocations and outcomes change.

2. Define a pseudo-outcome Gi = Yi + ν̂>e Di.

3. Use a method for CATE estimation with Gi as the outcome, Wi as the treatment, and Xi as

the covariates. This provides an estimate of CADE + CAIE: τ̂CADE(x, e) + τ̂CAIE(x, e).

4. The treatment rule is π̃(x) = 1(τ̂CADE(x, e) + τ̂CAIE(x, e) > 0).

This procedure is simple and computationally efficient to implement, since it involves con-

structing a pseudo-outcome, and estimating conditional average direct treatment effects on that

pseudo-outcome, which can be done using any standard method for CATE estimation. However, it

is not guaranteed that π̃ meets the necessary condition of Theorem 6. For some values of x ∈ X , the

sign of τCADE(x, π) + τCAIE(x, π) may be different at the observed equilibrium, when π = e, com-

pared to at the estimated treatment rule, when π = π̃. However, in searching for a non-parametric

treatment rule that is likely to perform well in equilibrium, π̃(x) is a good starting point.

4.3 Empirical Value Maximization

Alternatively, we can use a doubly-robust approach to estimate the value of a proposed treatment

rule, and optimize the estimated value. As in Section 3, we assume the assumptions of Theorem

4 hold, and the observed data is {Bi(Wi),Wi, Xi}, with treatment selection following the possibly

unknown e(Xi) = Pr(Wi = 1|Xi = x). A consistent estimate of the objective value for a given

function π(·) can be computed as:

V̂ (π) =
1

n

n∑
i=1

π(Xi)
(

Γ̂1,y
i (Pγ̂π ,q̃π)− Γ̂0,y

i (Pγ̂π ,q̃π)
)
,

γ̂π = π(Xi)γ̂
1 + (1− π(Xi))γ̂

0,

q̃π = π(Xi)q̃1 + (1− π(Xi))q̃0,

(13)

where γ̂w and q̃w for w ∈ {0, 1} are defined as part of the cross-fitting procedure in Definition 2.

Equation 13 extends the doubly-robust approach in Definition 2 to evaluate any given treatment

rule. To directly optimize the estimated value function by solving a finite-dimensional optimization

problem, it is necessary to constrain the class of possible treatment rules.

One option is to restrict π to be a member of a parametric class of functions Πβ. For example

Πβ could be the set of all logistic functions parametrized by β ∈ Ω from X to [0, 1], where Ω is a
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compact subset of R(m+1), and Xi is m-dimensional. Then, we can optimize V̂ (π(x;β)) directly

with respect to β.

The algorithm for doing so depends on the class of allocation rules Πβ and the properties of

V (π(x;β)). When the objective is strongly convex in β, we can use gradient descent to find a

maximum. With convexity rather than smoothness assumptions on the objective, as long as the

class of allocation rules is compact, then an approximately optimal solution can be found using an

intelligent grid search approach, such as Bayesian optimization, as long as the dimension of Xi is

not too high.

An important question is how a maximizer of V̂ (π(x;β)) performs compared to a maximizer

of the true objective V (π(x;β)). Although it is straightforward to show that for a single possible

treatment rule π(x;β), V̂ (π(x;β)) is a consistent and asymptotically normal estimate of V (π(x;β)),

deriving results that are uniform over Π is more challenging. Assuming that V̂ (π(x;β)) has a unique

maximizer β̂∗ = arg max
β∈Ω

V̂ (π(x;β)), the regret is defined as:

R(β̂∗) = max{V (π) : π ∈ Πβ} − V (π(x; β̂∗))

The approach in Athey and Wager (2021) can be extended to show that expected regret is of order√
V C(Πβ)/n, where V C(Πβ) is the Vapnik-Chervonenkis dimension of the class of treatment rules.

This implies maximizing the empirical value function well-approximates maximizing the true value

function.

5 Simulations

In this section, we illustrate the theoretical results in Section 3 using two simple simulations. In the

first simulation, we illustrate the robustness properties of the LDML estimator, in contrast to the

outcome modeling and propensity score estimator, using a simulation of a uniform price auction

where bidders values are generated from different distributions. In the second simulation, which is

of a market for schools with three schools, we show that asymptotically valid confidence intervals

for τ∗GTE built on the LDML estimator have good coverage for τGTE in finite samples.

5.1 Auction Simulation

In this section, we simulate data generated from a uniform price auction for a single good, and

use it to illustrate some of the properties of the LDML, outcome modeling, and IPW estimators

discussed in Section 3. A treatment affects bids to the auction. There is a 20-dimensional set of

covariates that is correlated with the bids and affects the probability of selecting the treatment.

The auction has a fractional capacity of 0.5, so that the top half of the bids in the auction receive

a single unit of the good. The treatment affects outcomes through a shift in the distribution of

bids submitted to the auction, and through a shift in the equilibrium market-clearing price. The

outcome of interest is the observed average surplus for bidders in the auction, assuming that the
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bids submitted to the auction are equal to the values for the bidders.

The data-generating process is follows, where Φ(·) is the standard normal CDF:

Bi(1) ∼ F1(Xi), Bi(0) ∼ F0(Xi), Xi ∼ Uniform(0, 1)20,

Wi ∼ Bernoulli(Φ(X1i − 0.5X2i + 0.5X3i)), Di(Wi, p) = 1(Bi(Wi) ≥ p),

Yi(W ) = (Bi(Wi)− P (W ))1(Bi(Wi) > P (W )),
1

n

n∑
i=1

1(Bi(W ) > P (W )) =
1

2
.

In the simulation, we compute the RMSE and bias of a variety of estimators when the target

estimand is τGTE = 1
n

n∑
i=1

Yi(1) − Yi(0). If the bid distributions F1(Xi) and F0(Xi) take a known

parametric form, then the outcome-modeling approach is the consistent and efficient estimator of

τ∗GTE . In the first set of simulations, we generate

Bi(0) ∼ LogNormal(0.8X1i − 0.3X2i − 0.2X3i, 0.3), Bi(1) = 1.5Bi(0)

On samples from a uniform price auction run on these bids, we compute three estimators:

• A model-based estimator following Equation 3. F̂1(Xi) and F̂0(Xi) are LogNormal(µ̂w(Xi), σ̂),

where µ̂w(Xi) is estimated using a linear regression of log(Bi(w)) on Xi for individuals with

Wi = w.

• An IPW-based estimator following Equation 6, with two-way data splitting and propensity

scores estimated using a random forest.

• An LDML estimator following Definition 2, with data splitting, and both propensity scores

and conditional mean nuisance functions estimated using random forests.

n=100 n=1,000 n=10,000

Bias RMSE Bias RMSE Bias RMSE

τ̂M -0.16 0.32 0.0038 0.019 -0.0002 0.004
τ̂ IPW 0.045 0.116 0.028 0.046 0.014 0.017
τ̂LDML 0.033 0.106 0.012 0.040 -0.002 0.010

Table 1: Lognormal Distribution for Bids. Metrics averaged over 100 simulations of each sample
size from the data-generating process.

With only 100 datapoints, then the noise in the estimation for all methods is high, and τGTE is

not estimated precisely. As the number of datapoints increases, the model-based estimator, which

makes the correct parametric assumption on the bid distribution, converges the fastest. The LDML

and IPW estimators, however, do not make any parametric assumptions, and instead use flexible-

machine learning estimators for nuisance parameter estimation. Depending on the convergence

properties of the propensity score, the IPW estimator may have bias that decays slowly, and an

asymptotic variance that is not efficient. The LDML estimator has an asymptotic distribution that

25



does not depend on the estimation errors of the nuisance functions. We see for this simulation,

the RMSE of the LDML estimator does decrease at a faster rate than that of the IPW estimator.

However, the outcome modeling estimator, which makes a correct parametric assumption, performs

best.

In the second set of simulations, we generate bids from a truncated normal distribution rather

than a lognormal distribution. Otherwise, the data-generating process is the same. We compute the

same three estimators, where we continue to use a random-forest based approach for the nuisance

functions for the IPW and LDML estimators, and a log-normal based approach for the outcome

modeling estimator.

n=100 n=1,000 n=10,000

Bias RMSE Bias RMSE Bias RMSE

τ̂M 0.13 0.085 0.077 0.096 0.080 0.082
τ̂ IPW 0.01 0.073 -0.0004 0.020 -0.0003 0.00063
τ̂LDML 0.018 0.083 0.004 0.021 -0.0004 0.00065

Table 2: Truncated Normal Distribution for Bids. Metrics averaged over 100 simulations of each
sample size from the data-generating process.

This time, the outcome modeling approach performs very poorly. The parametric assumption

is incorrect, and as a result the outcome model is asymptotically biased. On the other hand, the

IPW and LDML estimators, which use flexible models for certain statistics of the observed data,

rather than making a parametric assumption on the bid distribution, perform equally well here.

5.2 Simulation of a Market for Schools

We next construct a simulation of a schools market, where individuals rank schools according to

a random utility model, and the treatment affects a subgroup of students’ preferences for a high

quality school. There are three schools, with fractional capacity of 25%, 25% and 100%, respectively.

Only the first two are high quality. The outcome is average match-value, where the planner has a

higher value for a certain subgroup of students attending a high quality school. The data-generating

process is described in detail in Appendix C.

The distribution of the ground truth for two estimands defined on a sample of n individuals is

plotted in Figure 1a. Theorem 1 indicates that distribution of
√
n(τGTE − τ∗GTE) is asymptotically

normal, and we see in the plot that the density for τGTE roughly corresponds to a normal density.

We also plot the distribution of the estimand τDTE in repeated samples from the data-generating

process. τDTE is the direct treatment effect, which is defined in Hu et al. (2022) as

τDTE =
1

n

n∑
i=1

E[Yi(Wi = 1;W−i)|Yi(·)]− E[Yi(Wi = 0;W−i)|Yi(·)]

This estimand is relevant, because estimators for the average treatment effect in settings with-

out interference are consistent for τDTE when used in settings with interference (Sävje et al., 2021).

26



With samples of data drawn from the data-generating process, we construct estimates and conser-

vative confidence intervals for τDTE by using methods for the averaged treatment effect based on

generalized random forests, as described in Athey et al. (2019), and implemented in the R package

grf. The results in Munro et al. (2023) suggest that for this simulation, using confidence intervals

for the average treatment effect will be slightly conservative for τDTE . For the confidence intervals

for τGTE , we use the LDML estimator and confidence intervals for τ∗GTE that are described in

Section 3.

We see in Figure 1c that both the GRF-derived confidence intervals and the LDML-derived

confidence intervals are near the nominal coverage level for their respective estimands, with the

GRF-derived confidence intervals slightly over-covering. However, since the partial equilibrium

effect τDTE varies more than the general equilibrium effect, the confidence interval width for the

estimate of τGTE is substantially more narrow than the width for the estimate of the τDTE . The

noise in the counterfactual cutoff estimation is negatively correlated with noise from the variance in

outcomes evaluated at a single cutoff, which makes τGTE a lower variance target at a given sample

size.

(a) The distribution of τGTE and τDTE for a repeated
sample of n = 1000 agents over S = 1000 samples

(b) Confidence interval width for treatment effect es-
timators, averaged over S = 100 samples

(c) Coverage for treatment effect estimators, averaged
over S = 100 samples
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6 Evaluating Interventions in the Chilean School Market

Historically, the Chilean school system has had a high level of socio-economic segregation (Bellei,

2013; Valenzuela et al., 2014). In 2015, the Chilean government passed the Inclusion Law with the

goal of improving the education quality for low-income families. The law had multiple components

affecting admissions criteria and subsidies for schools that receive government funding in the coun-

try. One of the major components of the law was eliminating school-specific admissions criteria

in favor of a centralized admission system based on deferred acceptance, see Correa et al. (2019)

for a detailed description of the mechanism in Chile. After an initial rollout of the centralized

admission system in the region of Magallanes in 2017, the system was implemented in all regions

of Chile by 2020. Along with other changes in the Inclusion law, the centralized admission system

was intended to reduce inequality in access to good schools by removing possibly discriminatory

school-specific admissions criteria and implementing quotas that reserve some proportion of seats

in each school for lower-income families. However, as of data from 2019, low-income families still

attend high-quality schools at a much lower rate than high-income families. Figure 2 shows the

distribution of the quality of the school that a family ranks first, separated by whether or not the

family has priority in the admissions system due to low income. The school quality measure is

based on the average 10th grade student score in math and reading from 2018. The applications

data is from 2019, for prospective 9th graders. Lower-income families rank higher quality schools

first at a much lower rate than higher-income families.

Figure 2: The distribution of quality of first-ranked schools, for families applying in 2019 for 9th
grade.

There are variety of reasons why the gap might remain after the broad changes to the school

system beginning in 2015. Lower income families may live further from higher-quality schools, and

furthermore, may prefer to attend closer schools due to budget or time constraints. Another reason

is that some families may lack information about school quality, or the returns to schooling. If

they were better informed, they would apply to more high-quality schools. This hypothesis was
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explored using a randomized controlled trial in Allende et al. (2019). The randomized intervention

consisted of a video and report card that provided information on nearby schools and a higher-level

message on why it is important to choose a good school. The authors found that the intervention

increases the proportion of lower-income families that apply to high-quality schools. By embedding

their randomized trial in a structural model of school demand, they found that, by taking into

account equilibrium effects through capacity constraints, the effect on allocations was substantially

reduced, holding school capacity, prices, and quality fixed. The treatment effect estimates in that

paper rely on the correct specification of a parametric model of demand for schools.

The data from the existing paper, where unconfoundedness holds due to the randomized exper-

imental design, is not available, so the non-parametric LDML approach can’t be compared directly.

Instead, we estimate and perform inference on the effect of information on income inequality by

constructing a similar observational dataset on Chilean students and the centralized admission pro-

cess using public and private data from the Ministry of Education. We also find that information

affects choices positively, and that capacity constraints in the school system at high-quality schools

reduce the effect of the intervention on allocations significantly.

6.1 Data

We combine two datasets from the Ministry of Education for 2018 - 2020. For the admissions

system, we use publicly available data on the centralized admissions process (SAE) for 2020 for

those applying to the 9th grade in Chile. The process for school assignment in Chile occurs as

follows. First, families apply to schools and the assignment algorithm is run. In 2018, over 80%

of students accepted their assignment after the first round (Correa et al., 2019). Then, there is a

second round of deferred acceptance for those who reject their assignment, where only schools with

excess capacity are offered. Students unassigned in the second round are assigned to the nearest

school without a copay with an available seat. Since most students are allocated in the first round

(over 80%, in 2018), we focus on treatment effects where the outcome is the first round allocation.

The data on the admissions process for the first round includes:

• The ranking of programs for each school that each student submits to the centralized mech-

anism,

• Information on the priority of each student according to the rules of the admission system,

including whether they have low-income priority,8

• The location with error of each student and the location of each school,

• The actual assignment of the student after the school assignment algorithm.

For demographic data on students and school quality, we use student-level data collected for

the standardized test in Chile, known as SIMCE. This data is available from the Ministry of

8See Correa et al. (2019) for full details on the priorities and quotas in the Chilean admission system.
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Education for researchers by request. For school quality for the 9th grade admissions process, we

use a rough measure which is the average student math and reading score for the school in 2018

amongst 10th graders. For demographic information, students in the admissions process for 2020

completed a standardized test in 2019 as 8th graders. The parents of over 80% of these students

filled out an optional parent survey, which includes information on education level of the parents,

their attitudes towards education, their income and household size, and their knowledge about

their children’s school quality. We are able to link these datasets using an anonymized identifier

provided by the Ministry of Education.

6.2 Treatment Effect Estimates

For our analysis on the effect of information on access to education, the treatment is the third

question in the 30th section of the parent survey, which asks:

Do you know the following information about your child’s school? Performance category of this

school. 9

Wi = 1 if the response to this question is Yes, and Wi = 0 if it is No or if the response or survey

for the family is missing. The observed confounders are location (available for all applicants),

and household size, mother and father education level, whether or not the mother and father are

indigenous and the income of the family (available for those whose parents fulled out the SIMCE

survey in 8th grade). Missing covariates are imputed using a k-nearest neighbors approach. Table

5 in Appendix D includes the mean and standard deviation for each of the variables. 53% of the

sample of 114,749 applicants to 9th grade have Wi = 1.

Table 3 includes an estimate of treatment effects, where the outcomes are realized before schools

are allocated, and so are not impacted by interference in our framework. We use a doubly-robust

approach based on generalized random forests (GRF-ATE) to estimate the average treatment effect

(Tibshirani et al., 2022). This table provides some evidence that information helps low income

families submit applications that improve their chances at being allocated to better-quality schools.

In the sample, 36% of low income families with Wi = 0 rank a top-50% school first. Controlling

for selection using the variables in Table 5, the estimated treatment effect of the school quality

information on this ranking metric is 2.3%, which is a significant increase.

The admissions system allows families to apply to as many schools as they want, so there are

families in the dataset applying to up to 35 schools. However, the average number of schools ranked

by low income families is only 3.5. If these families ranked additional schools, the allocations of

the admissions system may improve. We find that the estimated ATE when the outcome is the

number of schools in a families ranked list is positive, but small.

Because of capacity constraints, not all families that rank a high-quality school first are admitted

to that school. Estimating treatment effects on allocations is more challenging due to interference

that occurs through the allocation mechanism. Table 4 shows an estimate of treatment effects, when

9The survey language (in Spanish) is: ¿Conoce usted la siguiente información del colegio de su hijo(a)? Categoŕıa
de desempeño de este colegio.
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Top 50% School Ranked First Length of Application List

τ̂GRF−ATE 2.3% 0.03
(0.40) (0.01)

Table 3: Doubly-robust estimates of the Average Treatment Effect, on outcomes that are not
affected by interference.

Estimator Treatment Effect Estimate (s.e.)

LDML-GTE 0.54% (0.36)
GRF-ATE 1.30% (0.32)
ATE-Bias 0.76% (0.38)

Table 4: Estimates of the treatment effect of informing parents about school quality on allocation
of low-income families to good quality schools.

the outcome is whether a low income family is accepted to an above-average school in Chile. We see

that the GRF-ATE estimator, which corrects for selection, but not equilibrium effects, estimates

a 1.3 percentage point increase in the allocation of low-income families to good quality schools.

However, the LDML estimate of the GTE is 0.5 percentage points, which is much lower. Figure

3 provides a breakdown of the bias of the GRF-ATE estimator. At the observed equilibrium, the

probability of admission to a good-quality school is higher than at the 100% treated equilibrium, and

lower than that of the 0% treated equilibrium. Estimating τGTE accurately requires estimating the

access of treated families at the treated equilibrium, and control families at the control equilibrium.

Direct Effect

Bias

Bias

Global Effect

Figure 3: The GRF-ATE estimator of the direct effect over-estimates the access of treated families
to good-quality schools and under-estimates the access of control families.

Figure 4: The Bias of Average Treatment Effect Estimators
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Figure 5: The estimated percentage of low-income families assigned to a good-quality school for
different treatment rules. Error bars are standard errors

By using a non-parametric causal framework to analyze treatment effects in this setting, het-

erogeneity at an individual level is not restricted. There may be heterogeneity in whether or not

individuals respond positively to the information, as well as heterogeneity in spillover effects. We

can use the theory in Section 4 to estimate and evaluate treatment rules that only treat some subset

of the sample defined by their pre-treatment covariates.

Figure 5 estimates the outcomes for a variety of treatment rules. All-Control assigns nobody

to treatment and All-Treated assigns everybody to treatment. The observed rule is the treatment

pattern observed in the data. The targeting rule assigns treatment to those with a positive estimated

CADE + CAIE at the observed equilibrium, so takes into account heterogeneity in direct treatment

effects and in spillover effects. The treatment rules are evaluated using data-splitting, where the

sample is split into two folds. On the first fold, the CADE + CAIE is estimated using a plug-in

estimator of the formulas given in Equation 12, as described in detail in Section 4.2. On the other

fold, the expected outcome under the treatment rule is estimated using the doubly-robust approach

in Equation 13. There is substantial heterogeneity in treatment response in the data. The gain of

the targeting rule over a rule that treats everyone is large, at 1.27% with an estimated standard

error computed using the bootstrap of 0.46%.

For this empirical example, the intervention is information on government school quality scores.

It is not clear that in practice it would be desirable or fair to target this kind of basic information.

However, the presence of significant heterogeneity in treatment response for this treatment suggests

that there may also be heterogeneity in other more complex interventions. For more complex

interventions designed to encourage low-income students to attend good quality schools, a targeting

rule may deliver significant improvements in outcomes and be practically feasible to implement.
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7 Discussion

Without some structure, estimating general causal effects under interference requires data that is

infeasible to observe. Under a fully specified and point-identified parametric model of individuals

interacting in a market, any counterfactual can be simulated, but the model must be specified

correctly. In this paper, we instead use the structure implied by the existence of a centralized

allocation mechanism, but remain non-parametric about individual choices, which can be difficult

to specify correctly. This leads to a computationally simple estimator for the GTE that is doubly-

robust and semi-parametrically efficient.

Using data from the school market in Chile, we show that correcting for spillover effects that

occur through the allocation mechanism substantially reduces the estimated effect of an information

intervention on inequality in school allocations. Furthermore, there is significant heterogeneity in

the effect of the information intervention, so a targeting rule performs much better than a policy

that provides information to everybody.

There are a variety of counterfactuals of interest that go beyond the estimands considered in this

paper. These include settings with supply-side responses, outcomes that are a non-deterministic

function of allocations, and mechanisms with strategic behavior, where individuals make choices

conditional on their expectations of the market equilibrium. For these problems, exploring whether

it is possible to derive robust estimators that combine non-parametric causal methodology with

economic structure imposed by design will be an interesting avenue for future work.
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A Proofs of Main Results

A.1 Building Blocks

Lemma 7. Convergence of Counterfactual Cutoffs Under Assumptions 1 - 2, then the market

clearing cutoffs when Wi = w for all i ∈ [n] and w ∈ {0, 1} converges in probability to p∗w:

Pw →p p
∗
w.

Proof. We prove this lemma by verifying the conditions Theorem 5.9 of van der Vaart (1998).

First, the uniform convergence

sup
p∈S

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

d(Bi(w), p)− E[d(Bi(w), p)]

∣∣∣∣∣
∣∣∣∣∣→p 0

follows from Lemma 2.4 of Newey and McFadden (1994), since by assumption d(Bi(w), p) is weakly

continuous in p and bounded, and S is compact. Since we have that E[d(Bi(w), p)] is continuous

in p, S is compact, and p∗w is unique by assumption, then the second required condition holds (see

for example Problem 5.27 of van der Vaart (1998)), for all ε > 0:

inf
p:d(p,p∗w)≥ε

||E[d(Bi(w), p)− q|| > 0 = ||E[d(Bi(w), p∗w)]||.

Lemma 8. Asymptotic Normality of Counterfactual Cutoffs Under Assumptions 1 - 2,

then the market-clearing cutoffs when Wi = w for all i ∈ [n], which we call Pw for w ∈ {0, 1}, are

asymptotically linear:

√
n(Pw − p∗w) =

1√
n

n∑
i=1

(d(Bi(w), p∗w)− E[d(Bi(w), p∗w)])

This implies that Pw is asymptotically normal:

√
n(Pw − p∗w)→D N(0,Ωw),

where Ωw = E[∇pE[d(Bi(w), p∗w)]−1(d(Bi(w), p∗w)− q)(d(Bi(w), p∗w)− q)>∇pE[d(Bi(w), p∗w)]−1].

Proof. We verify the conditions of Theorem 3.3.1 of van der Vaart and Wellner (1997) to prove this

Lemma.

• By Lemma 7, Pw →p p
∗
w.

• The finite sample market place approximately clears the market: 1
n

n∑
i=1

d(Bi(w), Pw) − q =

op(n
−1/2).
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• From Lemma 9, we have the expansion,

1√
n

n∑
i=1

d(Bi(w), P (w))− E[d(Bi(w), P (w))]− (d(Bi(w), p∗w)− E[d(Bi(w), p∗w)]) = op(1).

• By the CLT,

1√
n

n∑
i=1

d(Bi(w), p)− E[d(Bi(w), p)]→D N(0, V 2)

where V 2 <∞ because d(Bi(w), p) is bounded.

• E[d(Bi(w), p)]) is twice continuously differentiable in p

• ∇pE[d(Bi(w), p∗w)] is invertible by assumption

Now that the conditions are verified, the result of the Lemma follows directly from Theorem

3.3.1 of van der Vaart and Wellner (1997).

Lemma 9. Let Fi(p) = f(p, θi) for random θi be a bounded random vector-valued function. The

class of f(p, θ) indexed by p ∈ S is a Donsker function class. E[Fi(p)] is twice continuously differen-

tiable in p with bounded derivatives, and Fi(p) is continuous in p with probability 1. Let Pn be some

random variable such that Pn →p p
∗. Then, we have the following quadratic mean convergence:

E[(Fi(Pn)− Fi(p∗))2]→p 0

The following expansion holds:

1

n

n∑
i=1

Fi(Pn) =
1

n

n∑
i=1

Fi(p
∗) + E[Fi(Pn)]− E[Fi(p

∗)] + op(n
−0.5).

And, if we also have that Pn = p∗ +Op(
√
n) then the following expansion holds:

1

n

n∑
i=1

Fi(Pn) =
1

n

n∑
i=1

Fi(p
∗) + (Pn − p∗)>∇pE[Fi(p

∗)] + op(n
−0.5).

Proof. This Lemma also appears in Munro et al. (2023). First, for the quadratic mean convergence,

we show the function γ(p) = E[(Fi(p) − Fi(p∗))2] for any p is continuous. Then, the result holds

from the continuous mapping theorem. Write Fi(p) = f(p, θi) for random θi. Let the set of θ such
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that f(p, θ) is discontinuous at p be DCp. The set of θ such that the function is continuous is Cp.

E[(Fi(p)− Fi(p∗))2] =

∫
θ
[f(p, θ)− f(p∗, θ)]2p(θ)dθ

=

∫
θ∈Cp

[f(p, θ)− f(p∗, θ)]2p(θ)dθ −
∫
θ∈DCp

[f(p, θ)− f(p∗, θ)]2p(θ)dθ

=

∫
θ∈Cp

[f(p, θ)− f(p∗, θ)]2p(θ)dθ

= γ(p)

We can drop the integral over the discontinuous functions because it is a sum of bounded terms

that happen with zero probability. By the dominated convergence theorem, which lets us exchanged

the limit and the integral since f(p, θ) is bounded, then we have that γ(p) is continuous, since it

is equal to the integral of functions each of which are continuous. We have now proved that the

desired quadratic mean convergence holds.

Next, for the expansion. Given we have shown the quadratic mean convergence and that the

function class is Donsker, we can use Lemma 19.24 of van der Vaart (1998) to show the first

expansion directly.

√
n

[(
1

n

n∑
i=1

Fi(Pn)− E[Fi(Pn)]

)
−

(
1

n

n∑
i=1

Fi(p
∗)− E[Fi(p

∗)]

)]
→p 0,

which is equivalent to

1

n

n∑
i=1

Fi(Pn) =
1

n

n∑
i=1

Fi(p
∗) + E[Fi(p)]− E[Fi(p

∗)] + op(n
−0.5).

For the final expansion. Since we have that E[Fi(p)] is twice continuously differentiable in p, we

can use a Taylor expansion to write that

E[Fi(Pn)] = E[Fi(p
∗)] + (Pn − p∗)∇pE[Fi(p

∗)] +Rn

Rn = op(n
−0.5) since derivatives are bounded and Pn− p∗ = Op(n

−0.5). Plugging this into the first

expansion, we have now shown that the second expansion holds:

1

n

n∑
i=1

Fi(Pn) =
1

n

n∑
i=1

Fi(p
∗) + (Pn − p∗)>∇pE[Fi(p

∗)] + op(n
−0.5).

A.2 Proof of Theorem 1

To prove this theorem, we first prove Lemma 10.
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Lemma 10. Under Assumptions 1 - 2, then

√
n(τw − τ∗w) =

1√
n

n∑
i=1

y(Bi(Wi), p
∗
w, Xi)− E[y(Bi(Wi), p

∗
w, Xi)]− ν>w (d(Bi(Wi), p

∗
w)− q) + op(1)

Proof.

τw − τ∗w =
1

n

n∑
i=1

y(Bi(Wi), Pw, Xi)− E[y(Bi(Wi), p
∗
w, Xi)]

(1)
=

1

n

n∑
i=1

y(Bi(Wi), p
∗
w, Xi)− E[y(Bi(Wi), p

∗
w, Xi)] + (Pw − p∗w)>∇pE[y(Bi(Wi), p

∗
w, Xi)] + op(n

−0.5)

(2)
=

1

n

n∑
i=1

y(Bi(Wi), p
∗
w, Xi)− E[y(Bi(Wi), p

∗
w, Xi)]− ν>w (d(Bi(Wi), p

∗
w)− q) + op(n

−0.5)

(1) comes from Lemma 9 and (2) follows from Lemma 8.

Now, using Lemma 10 for both τ1 − τ∗1 and τ0 − τ∗, we can expand τGTE − τ∗GTE . Let Swi =

y(Bi(Wi), p
∗
w, Xi)− ν>w (d(Bi(Wi), p

∗
w)).

√
n(τGTE − τ∗GTE) =

1√
n

n∑
i=1

(S1
i − S0

i )− (E[S1
i ]− E[S0

i ])

By the CLT, we have that
√
n(τGTE − τ∗GTE) →D N(0,E[Q2

i ]) and Qi = (S1
i − S0

i ) − (E[S1
i ] −

E[S0
i ]).

A.3 Proof of Theorem 5

The proof follows uses the methodology presented in Bickel et al. (1993) and Newey (1990). The

organization and notation of the proof is similar to other papers that apply this methodology to

related estimands, including Hahn (1998) and Hirano et al. (2003) for average treatment effects,

Firpo (2007) for quantile treatment effects, and Chen and Ritzwoller (2021) for long-run treatment

effects. Our presentation and notation is closest to that of Firpo (2007).

Deriving the Score Function

Under Assumption 3, the density of the data (B(1), B(0),W,X) can be factorized as:

φ(b(1), b(0), w, x) = f(b(1), b(0), |x)e(x)w(1− e(x))1−wf(x)
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Under Assumption 3, the density of the observed data (B,W,X) can be factorized as:

φ(b, w, x) = [f1(b|x)e(x)]w[f0(b|x)(1− e(x))]1−wf(x).

where f1(b|x) =
∫
f(b1, b0|x)db0 and f0(b|x) =

∫
f(b1, b0|x)db1. We define a regular parametric

submodel of the observed data density indexed by θ:

φ(b, w, x; θ) = [f1(b|x; θ)e(x; θ)]w[f0(b|x; θ)(1− e(x; θ))]1−wf(x; θ)

We can now derive the score of the parametric submodel:

s(b, w, x; θ) = w · s1(b|x; θ) + (1− w) · s0(b|x; θ) +
w − e(x)

e(x)(1− e(x))
e′(x) + sx(x; θ)

where

s1(b|x; θ) =
∂

∂θ
log f1(b|x; θ)

s0(b|x; θ) =
∂

∂θ
log f0(b|x; θ)

e′(x; θ) =
∂

∂θ
log e(x; θ)

sx(x; θ) =
∂

∂θ
log f(x; θ)

The tangent space of this model is defined as the set of functions

g(r, w, x) = wg1(b|x) + (1− w)g0(b|x) + (w − e(x))g2(x) + g3(x)

such that g1 through g3 range through all square integrable functions satisfying

E[g1(Bi|Xi)|Xi = x,Wi = 1] = 0

E[g0(Bi|Xi)|Xi = x,W = 0] = 0

E[g3(Xi)] = 0

Pathwise Differentiability

We next derive the pathwise derivative of τGTE = τ1 − τ0, where τ1 = E[y(Bi(1), p1, Xi)] and

τ0 = E[y(Bi(0), p0, Xi)]. We go through the details for τ1, and then state the result for τ0, since

the derivation follows the same steps.

τ ′1 = ∇pE[y(Bi(1), p1, Xi)]
>p′1 +

∂

∂θ

∫ ∫
y(b, p1, x)f1(b|x; θ)f(x; θ)dbdx (14)

The next step is to derive p′1. By Assumption 1, p1 is defined implicitly by E[d(Bi(1), p1)−q] = 0.

By the implicit function theorem, we can write
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p′1 = −∇pE[d(Bi(1), p1)− q]−1 ∂

∂θ

∫ ∫
(d(b, p1)− q)f1(b|x; θ)f(x; θ)dbdx.

The derivative of the moment conditions, evaluated at θ0, are as follows, where we write

f(x; θ0) = f(x) and f1(b|x; θ0) = f1(b|x).

∂

∂θ

∫ ∫
y(b, p1, x)f1(b|x; θ)f(x; θ)dbdx =

∫ ∫
y(b, p1, x)s1(b|x)f1(b|x)f(x)dbdx

+

∫ ∫
y(b, p1, x)f1(b|x)sx(x)f(x)dbdx

∂

∂θ

∫ ∫
(d(b, p1)− q)f1(b|x; θ)f(x; θ)dbdx =

∫ ∫
(d(b, p1)− q)s1(b|x)f1(b|x)f(x)dbdx

+

∫ ∫
(d(b, p1)− q)f1(b|x)sx(x)f(x)dbdx

Plugging these into the Equation 14,

τ ′1 =

∫ ∫
q1(b)s1(b|x)f1(b|x)f(x)dbdx+

∫ ∫
q1(b)f1(b|x)sx(x)f(x)dbdx,

where q1(b, x) = y(b, p1, x)− ν>1 (d(b, p1)− q). Let q0(b, x) = y(b, p0, x)− ν>0 (d(b, p0)− q). After

the same procedure for τ ′0, we can write

τ ′GTE =

∫ ∫
q1(b, x)s1(b|x)f1(b|x)f(x)dbdx+

∫ ∫
q1(b, x)f1(b|x)sx(x)f(x)dbdx

−
∫ ∫

q0(b, x)s0(b|x)f0(b|x)f(x)dbdx−
∫ ∫

q0(b, x)f0(b|x)sx(x)f(x)dbdx.

=E[q1(Bi(1), Xi)s1(Bi(1)|Xi)] + E[µq1(Xi)sx(Xi)]

Conjectured Efficient Influence Function

Let µq1(Xi) = E[q1(Bi, Xi)|Xi,Wi = 1] and µq0(Xi) = E[q1(Bi, Xi)|Xi,Wi = 0]. First, a reminder

that

ν0 = [∇pE[d(Bi(0), p0)]]−1∇pE[y(Bi(0), p0, Xi)]

ν1 = [∇pE[d(Bi(1), p1)]]−1∇pE[y(Bi(1), p1, Xi)]

A function that is in the tangent space is:

ψ(Bi,Wi, Xi) =E[q1(Bi, Xi)|Xi,Wi = 1]− E[q0(Bi, Xi)|Xi,Wi = 0]− τ

+
Wi(q1(Bi, Xi)− E[q1(Bi, Xi)|Xi,Wi = 1])

e(x)
− (1−Wi)(q0(Bi, Xi)− E[q0(Bi, Xi)|Xi,Wi = 0])

1− e(x)
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We can verify it is in the tangent space.

1. g1(b|x) = q1(b,x)−E[q1(Bi,Xi)|Xi=x,Wi=1]
e(x) . For any x,

E[g1(Bi|Xi)|Xi = x,Wi = 1)] =
E[q1(Bi, Xi)|Xi = x,Wi = 1]− E[q1(Bi, Xi)|Xi = x,Wi = 1]

e(x)
= 0.

2. g0(b|x) = q0(b,x)−E[q0(Bi,Xi)|Xi=x,Wi=0]
1−e(x) . For any x,

E[g0(Bi|Xi)|Xi = x,Wi = 0] =
E[q0(Bi, Xi)|Xi = x,Wi = 0]− E[q0(Bi, Xi)|Xi = x,Wi = 0]

1− e(x)
= 0.

3. g2(x) = 0

4. g3(x) = E[q1(Bi, Xi)|Xi,Wi = 1]− E[q0(Bi, Xi)|Xi,Wi = 0]− τ

E[g3(Xi)] = E[µq1(Xi)]− E[µq0(Xi)]− E[µq1(Xi)] + E[µq0(Xi)]

= 0

Given it is an element of the tangent space, if it is an influence function it is efficient. To verify

that is an influence function, we must show that

E[ψ(Bi,Wi, Xi)s(Bi,Wi, Xi)] = τ ′

We can divide ψ(Bi,Wi, Xi) = ψ1(Bi,Wi, Xi)− ψ0(Bi,Wi, Xi), where

ψ1(Bi,Wi, Xi) = E[q1(Bi, Xi)|Xi,Wi = 1]− E[q1(Bi, Xi)|Wi = 1] +
Wi(q1(Bi, Xi)− E[q1(Bi, Xi)|Xi,Wi = 1])

e(x)

ψ0(Bi,Wi, Xi) = E[q0(Bi, Xi)|Xi,Wi = 1]− E[q0(Bi, Xi)|Wi = 0]

+
(1−Wi)(q0(Bi, Xi)− E[q0(Bi, Xi)|Xi,Wi = 0])

1− e(x)

We work through the details for ψ1(·), since the process is the same for ψ0(·).

E[ψ1(Bi,Wi, Xi)s(Bi,Wi, Xi)]

= E [(q1(Bi(1), Xi)− µq1(Xi))s1(Bi(1)|Xi) + sx(Xi)(q1(Bi(1))− µq1(Xi))]

+ E[Wis1(Bi(1)|Xi) · µq1(Xi) + (1−Wi)s0(Bi(0)|Xi) · µq1(Xi) + sx(Xi)µ
q
1(Xi)]

= E[q1(Bi(1), Xi)s1(Bi(1)|Xi)] + E[sx(Xi)µ
q
1(Xi)] + E[(1− e(Xi))E[s1(Bi(1)|Xi)− s0(Bi(0)|Xi)|Xi = x]µq1(Xi)]

(1)
= E[q1(Bi(1), Xi)s1(Bi(1)|Xi)] + E[sx(Xi)µ

q
1(Xi)]

= τ ′1
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(1) is because E[sw(Bi(w)|Xi)|Xi = x] = 0 for each x ∈ X and w ∈ {0, 1}.
Similarly, we can show that E[ψ0(Bi,Wi, Xi)s(Bi,Wi, Xi)] = τ ′0. We have now shown that

E[ψ(Bi,Wi, Xi)s(Bi,Wi, Xi)] = τ ′.

Semi-Parametric Efficiency Bound

We have shown that the function ψ(Bi,Wi, Xi) is an efficient influence function. The semi-

parametric efficiency bound is

V ∗ = E[ψ(Bi,Wi, Xi)
2],

We can show this matches the form in Theorem 5: Let µqw(Xi) = E[qw(Bi, Xi)|Xi,Wi = w],

V ∗ = E

[(
µq1(Xi)− µq0(Xi)− τ∗GTE +

Wi(q1(Bi, Xi)− µq1(Xi)

e(Xi)
− (1−Wi)(q0(Bi, Xi)− µq0(Xi)

1− e(Xi)

)2
]

= Var

[
µq1(Xi)− µq0(Xi) +

Wi(q1(Bi, Xi)− µq1(Xi))

e(Xi)
− (1−Wi)(q0(Bi, Xi)− µq0(Xi))

1− e(Xi)

]
= Var[µq1(Xi)− µq0(Xi)] + E

[(
Wi(q1(Bi, Xi)− µq1(Xi))

e(Xi)

)2
]

+ E

[(
(1−Wi)(q0(Bi, Xi)− µq0(Xi))

1− e(Xi)

)2
]

= Var[µq1(Xi)− µq0(Xi)] + E
[
E[W 2

i |Xi]

e(Xi)2
E
[
(q1(Bi(1), Xi)− µq1(Xi))

2 |Xi

]]
− E

[
E[(1−Wi)

2|Xi]

(1− e(Xi))2
E
[
(q0(Bi(0), Xi)− µq0(Xi))

2 |Xi

]]
= Var[µq1(Xi)− µq0(Xi)] + E

[
E[(q1(Bi(1), Xi)− µq1(Xi))

2 |Xi]

e(Xi)

]
− E

[
E[(q0(Bi(0), Xi)− µq0(Xi))

2 |Xi]

1− e(Xi)

]
(15)

The last equality is because E[W 2
i |Xi] = E[Wi|Xi] = e(Xi). Since we have that qw(b, x) =

y(b, pw, x)− ν>w (d(b, pw)− q), this expression now matches the one in Theorem 5.

A.4 Proof of Theorem 4

The following assumption matches the assumptions of Theorem 3 of Kallus et al. (2019) under

pointwise convergence, and with the notation slightly modified to better match the conventions in

this paper.

Assumption 5. Assumptions of Theorem 3 of Kallus et al. (2019) There exist positive

constants c′, C, and c1 to c7 such that for probability distribution P, the following conditions hold:

1. We can write the true parameter vector θ∗,

E[U(Bi(1); θ1,1)]− E[U(Bi(0); θ1,0)] + V (θ2) = 0, (16)
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in terms of a d-length vector of moment conditions.10 Let Zi = (Bi,Wi, Xi). Under the

assumption of unconfoundedness and strong overlap, this is equivalent to the following moment

condition defined on observed data:

E[ψ(Zi; θ, µ
∗(Zi; θ1), e(Xi))] = 0,

where θ1 is a vector that collects θ1,1 and θ1,0 and µ∗(·) is a vector of functions that collects

µ∗1(·) and µ∗0(·).

ψ(Zi; θ; e(Xi), µ
∗(Xi; θ1)) = µ∗1(Xi; θ1,1)− µ∗0(Xi, θ1,1) +

1(Wi = 1)(U(Bi; θ1,1)− µ∗1(Xi; θ1,1))

e(Xi)
+

+
1(Wi = 0)(U(Bi; θ1,0)− µ∗0(Xi; θ1,0)

1− e(Xi)
+ V (θ2)

µ∗w(Xi; θ1,w) = E[U(Bi(w); θ1,w)|Xi = x]

e(Xi) = Pr(Wi = 1|Xi = x)

2. (Strong Overlap). Assume that there exists a positive constant ε > 0 such that e(Xi) ≥ ε and

1− e(Xi) ≥ ε almost surely.

3. For any sequence of constants ∆n → 0, the nuisance estimates (µ̂(k)(·; θ̂(k)
1,init), ê

(k)(·)) belong

to the realization set Tn for all k = 1, . . .K with probability at least 1 − ∆n. The estimated

propensity score ê(Xi) satisfies strong overlap almost surely. For w ∈ {0, 1},

||(E(µ̂(k)(Xi; θ̂
(k)
1,init)− µ

∗(Xi; θ̂
(k)
1,init))

2)1/2|| ≤ ρµ,n
(E(ê(k)(Xi)− e(Xi))

2)1/2 ≤ ρe,n

||θ̂(k)
1,init − θ

∗
1|| ≤ ρθ,n,

where ρe,n(ρµ,n + Cρθn) ≤ ε3

3 δnn
−1/2, ρe,n ≤ δ3n

logn , ρµ,n + Cρθ,n ≤ δ2n
logn , δn ≤ 4C2

√
d+2ε
ε2

, and

δn ≤ min
{

ε2

8C2d
log n,

√
ε3

2C
√
d

log1/2 n
}

. Furthermore, the nuisance realization set contains

the true nuisance parameters (µ∗(·; θ∗1), e(·)).

4. The solution approximation error for the estimating equation satisfies vn ≤ δnn−1/2

5. Θ is a compact set and θ∗ is in the interior of Θ

6. The map (θ, a, b) 7→ E[ψ(Z; θ, a, b)] is twice continuously Gateaux-differentiable on θ × T .

10For clarity, in this appendix the version of the Theorem in Kallus et al. (2019) has been extended to explicitly
handle a target parameter that is the difference in two moment conditions, rather than handling the moment conditions
for treated and control counterfactuals separately. Handling them separately or together is equivalent, as discussed
in Remark 2 of Kallus et al. (2019).
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7. The singular values of the covariance matrix Σ are bounded between constants c5 and c6:

Σ = E
[
J∗−1ψ(Zi; θ

∗, µ∗(Zi; θ
∗
1), e(Xi))ψ(Zi; θ

∗, µ∗(Zi; θ
∗
1), e(Xi))

>J∗−1
]

8. For each (µ, e) ∈ Tn the function class F1,η = {z 7→ ψj(z; θ, µ, e); j = 1, . . . , dθ, θ ∈ Θ} is

suitably measurable and its uniform covering entropy obeys

sup
Q

log n(ε||F̄1,η||Q,2,F1,η, || · ||Q,2) ≤ v log(a/ε)

for all 0 < ε ≤ 1, where F̄1,η is a measurable envelope for F1,η, that satisfies ||F̄1,η||P,q ≤ c1.

9. For j = 1, . . . , d, and w ∈ {0, 1}, θ 7→ E[Uj(Bi(w); θ1) + Vj(θ2)] is differentiable at any θ in a

compact set Θ, and each component of its gradient is c′-Lipschitz continuous at θ∗. Moreover,

for any θ ∈ Θ with ||θ − θ∗|| ≥ c3
2
√
dc′

, we have that 2||E[U(Bi(1); θ1,1) − U(Bi(0); θ1,0) +

V (θ2)]|| ≥ c2.

10. The singular values of ∂θ>E[U(Bi(1); θ1,1)−U(Bi(0); θ1,0) + V (θ2)]|θ=θ∗ are bounded between

c3 and c4

11. For any θ ∈ B
(
θ∗;

4C
√
dρe,n
δnε

)
∩ Θ, r ∈ (0, 1) and j = 1, . . . , d, there exist h1(w, x; θ1,

h2(w, x; θ1) such that E[h1(w,Xi; θ1)] <∞, and E[h2(w,Xi; θ1)] <∞ and almost surely

|∂rµ∗j (Xi; θ
∗
1 + r(θ1 − θ∗1))| ≤ h1(w,Xi; θ1)

|∂2
rµ
∗
j (Xi; θ

∗
1 + r(θ1 − θ∗1))| ≤ h2(w,Xi; θ1)

12. For j = 1, . . . , d and any θ ∈ Θ, we have (E(µ∗j (Xi; θ1))2)1/2 ≤ C

13. For j = 1, . . . , d and any θ ∈ B
(
θ∗;

4C
√
dρe,n
δnε

)
∩Θ:

{
E[µ∗j (Xi; θ1)− µ∗j (Xi; θ

∗
1)]2
}1/2 ≤ C||θ1 − θ∗1||

||
{
E[∂θ1µ

∗
j (Xi; θ1)]2

}1/2 || ≤ C

σmax(E[∂θ1∂θ>1
µ∗j (Xi; θ1)]) ≤ C

σmax(∂θ2∂θ>2
Vj(θ2)) ≤ C

Theorem 11. Theorem 3 of Kallus et al. (2019) Under Assumption 5, let the LDML estimator

θ̂ be defined as a solution to

1

n

n∑
i=1

ψ(Zi; θ, µ̂
k(i)(Xi; θ̂

k(i)
1,init), ê

k(i)(Xi)) = εn (17)

where ||εn|| = op(n
−1/2), k(i) ∈ {1, . . . ,K} is the fold of observation i, and the estimated nuisance
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parameters are defined using the cross-fitting procedure of Definition 2 of Kallus et al. (2019).

Then,

√
n(θ̂ − θ∗) =

−1√
n

n∑
i=1

J∗−1ψ(Zi; θ
∗, µ∗, e)→D N(0,Ω)

where Ω = J∗−1E[ψ(Zi; θ
∗, µ∗, e)ψ(Zi; θ

∗, µ∗, e)′](J∗−1)′ and J∗ = ∇θE[ψ(Zi; θ
∗
1, e(Xi), µ

∗(Zi; θ
∗
2))]]θ=θ∗.

Proof. First, we show that each component of Assumption 5 is implied by Assumptions 1 - 4.

1. Mapping to the notation of Kallus et al. (2019), we have θ∗2 = τ∗GTE and θ∗1 = (p∗0, p
∗
1). The

observed data is Zi = (Bi(Wi), Xi,Wi). We can write τ∗GTE = τ∗1 − τ∗0 .

0 = E[y(Bi(w), p∗w, Xi)]− τ∗w
0 = E[d(Bi(w), p∗w)− q]

Under unconfoundedness and strong overlap of Assumption 3, then Equation 7 takes the form

of Equation 16, with V (θ2) =

[
−τ∗GTE

0

]
and

U(Bi(w); θ1,w) =

[
y(Bi(w), pw, Xi)

d(Bi(w), pw, Xi)− q

]
, µ∗w(Xi; θ1,w) =

[
µy(p∗w, Xi)

µd(p∗w, Xi)

]
.

2. This holds by Assumption 3

3. This holds by Assumption 4, with δn = o(1)

4. This holds by the second part of Assumption 1, with δn = o(1).

5. Since Yi is bounded, we can define compact set on the real line that includes the maximum

and minimum possible value of the outcome in the interior of that set. We assume that S is

compact, and that pw lies in the interior of that set in Assumption 2.

6. This follows from the twice continuous differentiability of µyw(p, x) and µdw(p, x) in p. To see

this explicitly, the components of the first element of E[ψ(Zi; θ1, a, b)] that correspond to the

treated counterfactual are:

E
[
b · v +

Wi(y(Bi(1), p1, Xi)− b · v)

a

]
= b · v +

E[e(Xi)(µ
y
1(p1, Xi)− b · v)]

a

where v selects the element of b corresponding to µy1(·). This term is linear in b, so is twice

continuously differentiable in b. It is also twice continuously differentiable in a when a 6= 0.
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We can swap derivatives and expectations by the dominated convergence theorem since Yi is

bounded. The expectation is twice differentiable in p1 since in Assumption 2, we have assumed

that µyw(p, x) is twice continuously differentiable in p. The argument is the same for the other

elements of ψ(Zi; θ1, a, b) and for the terms corresponding to the control counterfactual.

7. Since we are analyzing non-uniform convergence, following Remark 2 of Kallus et al. (2019) we

can relax this assumption to just ensuring that c6 is finite. This is the case when d(Bi(w), p)

and y(Bi(w), p,Xi) are bounded.

8. Since the score function is a linear combination of y(Bi(w), p,Xi) and d(Bi(w), p), by the com-

position rules of Donsker classes, then this holds by the Donsker assumption in Assumption

1.

9. The first part of this holds by the continuous differentiability of µdw(p, x) and µyw(p, x) in

p with bounded first derivative. The second part holds by uniqueness of p∗0 and p∗1. If we

have have ||θ̃ − θ∗|| > 0, but E[U(Bi(1), θ̃1,1) − U(Bi(0), θ̃1,0) + V (θ̃2)] = 0, then it must be

that θ̃ also satisfies the score condition. This means that p∗0 and p∗1 do not uniquely satisfy

E[d(Bi(1), p)]− q = 0 and E[d(Bi(0), p)]− q = 0, which is a contradiction.

10. Let µdw(p) = E[µdw(p,Xi)] and µyw(p) = E[µyw(p,Xi)] for w ∈ {0, 1}.

J∗ = ∇θE[ψ(Zi; θ, µ(θ), e(Xi))]θ=θ∗ =

1 −∇pµy0(p) ∇qµy1(q)

0 0 ∇qµd1(q)

0 ∇pµd0(p) 0

 ∣∣∣∣
p=p∗0,q=p

∗
1

Inverting this,

J∗−1 =

−1 ∇qµy1(q)[∇qµd1(q)]−1 −∇pµy0(p)[∇pµd0(p)]−1]

0 0 [∇pµd0(p)]−1

0 [∇qµd1(p)]−1 0

 ∣∣∣∣
p=p∗0,q=p

∗
1

(18)

The inverted matrices exist under the invertibility condition in Assumption 2.

11. This condition holds since we have assumed that the first and second derivatives of µdw(p, x)

and µyw(p, x) are bounded in Assumption 2.

12. This condition holds since y(b(w), p, x) and d(b(w), p) is bounded.

13. (a) This holds since µdw(p, x) and µyw(p, x) are continuously differentiable in p with a bounded

first derivative.

(b) This holds since µdw(p, x) and µyw(p, x) are continuously differentiable in p with a bounded

first derivative.

(c) For the third condition, this holds since µdw(p, x) and µy( p, x) are twice continuously

differentiable in p with a bounded second derivative.
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(d) For the last condition, V (θ2) = −θ2. The second derivative is 0, so this holds for any

C > 0.

Now that we have verified Assumption 5, then we just have to verify that the algorithm for

τ̂LDML
GTE finds a solution to the empirical score condition in Equation 17. The nuisance parameter

estimation of Part 1 of Definition 2 follows the data-splitting procedure described in Kallus et

al. (2019), where the first-step estimate of θ̂1,init comes from an IPW estimator. The rest of the

algorithm in Definition 2 sets the empirical average doubly-robust scores, evaluated at the estimated

nuisance parameters, to zero. The perturbed and re-weighted mechanism computes Pγ̂1,q̃1 and Pγ̂0,q̃1
as the cutoffs that ensure the empirical average doubly-robust score for allocations under treatment

and control is equal to the fractional capacity constraint. For example, by the definition of the

weighted mechanism given in Equation 5, Pγ̂1,q̃1 is the solution to

1

n

n∑
i=1

µ̂d,k(i)(Xi) +
Wi

êk(i)(Xi)
[d(Bi, p,Wi, Xi)− µ̂d,k(i)

1 (Xi)] = q.

This step clears 2J of the 2J + 1-length vector of score conditions defined using ψ(·). Then,

the final empirical score condition is satisfied by τ̂LDML
GTE . So, Theorem 11 holds, for τ̂GTE .This

assumption implies that the asymptotic variance of τ̂LDML
GTE is equal to the [1, 1]-th element of the

matrix Ω

Ω = J∗−1E

 [φτ,i]
2 φτ,iφ1,i φτ,iφ0,i

φ1,iφτ,i φ1,iφ
>
1,i φ1,iφ

>
0,i

φ0,iφτ,i φ0,iφ
>
1,i φ0,iφ

>
0,i

 [J∗−1]>

where J∗−1 is given in Equation 18 and φτ,i, φ1,i and φ0,i are the first, next J , and final J

elements of the vector ψ(Zi; θ
∗
1, e(Xi), µ(Xi; θ

∗
1)− V (τ∗GTE). By evaluating the matrix product, the

[1, 1]th element of this matrix is equal to the V ∗ given in Theorem 5. Showing this explicitly, we

can write the first row of [J∗]−1 as
[
−1 a2 a3

]
and the symmetric matrix is

b11 b12 b13

b12 b22 b23

b13 b23 b33

.

Ω1,1 = E[b11 − 2a2b12 − 2a3b13 + a2
2b22 + a2

3b33 + 2a2a3b23]

= E[φ2
τ,i − 2ν>1 φ1,iφτ,i + 2ν>0 φ0,iφτi + (ν>1 φ1,i)

2 + (ν>0 φ0,i)
2 − 2ν>1 φ1,iν

>
0 φ0,i]

= E[(φτ,i − ν>1 φ1,i + ν>0 φ0,i)
2]

= E

[(
µq1(Xi)− µq0(Xi)− τ∗GTE +

Wi(q1(Bi, Xi)− µq1(Xi)

e(Xi)
− (1−Wi)(q0(Bi, Xi)− µq0(Xi)

1− e(Xi)

)2
]

where qw(b, x) = y(b, p0, x) − ν>1 (d(b, p∗w) − q) and µqw(Xi) = E[qw(Bi, Xi)|Xi,Wi = w]. This

now matches the first line of Equation 15 in the proof of the efficiency result, which shows that the

variance of the LDML estimator matches that of the efficient score.
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An analytical characterization for other elements of the covariance of the vector

τ̂
LDML
GTE

Pγ̂1,q̃1
Pγ̂0,q̃0

 are

also available by computing the matrix product for other elements of Ω.

A.5 Proof of Proposition 2

Proof. The first two parts of Assumption 1 are discussed in the text. The third holds by assumption.

The fourth holds for the demand function since the function class is a class of indicator functions,

which is a Donsker class.

Since Vi(Wi) is bounded, we can define S as [V − − ε, V + + ε] for some ε > 0, where V − is the

minimum possible value of Vi and V + is the maximum. This is a compact set, and for any P+ > V +,

d(Vi(Wi), P
+) = 0, and for any P− < V −, d(Vi(Wi), P

−) = 1. Dn(p) = 1
n

n∑
i=1

1(Vi(Wi) > p) is

weakly monotonic on p. As long as 0 < q < 1, then any market-clearing price will be in S.

For Assumption 2, we first derive the form of µdw(p, x).

E[1(Vi(w) > p|Xi = x)] = 1− Fv(w)|x(p|x)

The unconditional distribution Fv(w) =
∫
Fv(w)|xdFx(x). Under the strict monotonicity assump-

tion, then for q ∈ (0, 1) p∗w is the unique solution defined as p∗w = F−1
v(w)(1 − q). By the definition

of S, at the boundaries of S, the distribution function is either 0 or 1. So, for q ∈ (0, 1), then p∗w

is always in the interior of S.

The third part of Assumption 2 is satisfied by assumption, given we can express µdw(p, x) in

terms of the conditional distribution Fv(w)|x(p|x).

Last, we have that ∇pE[d(Bi(w), p)] = −fv(w)(p). This is invertible by the strict monotonicity

of Fv(w), which implies that fv(w)(p
∗
w) 6= 0 for w ∈ {0, 1}.

A.6 Proof of Proposition 3

This is an extension of Proposition 2.

Proof. The first two parts of Assumption 1 are discussed in the text. The third holds by assumption.

The fourth holds for the demand function since the function class is a class of indicator functions,

which is a Donsker class.

Since Si is bounded, we can define S as [S− − ε, S+ + ε]J for some ε > 0, where S− is the

minimum possible value of Si and S+ is the maximum. This is a compact set, and for any P+ >

S+, d(Vi(Wi), P
+) = 0, and for any P− < S−, d(Vi(Wi), P

−) = 1. Djn(p) = 1
n

n∑
i=1

1{Sij >

pj , jRi(Wi)0}
∏
j 6=j′ 1(jRi(Wi)j

′ or Sij′ < pj′) is weakly monotonic in pj . Thus, as long as 0 < q <

1, then any market-clearing price will be in S.
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For Assumption 2, we first derive the form of µdj,w(p, x). For a given ranking r, let a(r, j) define

the set of schools ranked above school j.

E[dj(Bi(w), p)|Xi = x] =
∑
r∈R

Pr(r|w)(1− Fs|x(pj))
∏

j′∈a(r,j)

Fs|x(pj′)

Since lottery numbers are assigned independently for each school, the probability that an indi-

vidual is assigned to school j takes a simple form in terms of conditional distributions of the lottery

number. The unconditional distribution Fs =
∫
Fs|xdFx(x).

For uniqueness, we use Proposition C.4 of Agarwal and Somaini (2018). Using this proposition

requires showing that µdj (p) is strictly decreasing in p∗j . This is the case, since µdj (p) depends on p∗j
only through Fs(p

∗), which is strictly monotonic.

The third part of Assumption 2 is satisfied by assumption, given we can express µdw(p, x) in

terms of products of the conditional distribution Fs|x(s|x), and the conditional distribution meets

the required smoothness assumptions.

Lastly, we can also use Proposition C.4 of Agarwal and Somaini (2018) for the invertibility as-

sumption, as long as µdj (p) is continuous in p. This holds since it is twice continuously differentiable

in p, by the twice continuous differentiability of Fs(s).

A.7 Proof of Theorem 6

Proof. The first step is to show that

∂V (π;h) =

∫
h(x)(τ∗CADE(x, π) + τ∗CAIE(x, π))dF (x)

where ∂V (π;h) is the Gateaux derivative of V (π) in the direction of h ∈ Π. First, we write V (π)

as an integral over x:

V (π) = E[π(Xi)(Yi(1, p
∗
π)− Yi(0, p∗π))]

=

∫
τ∗CADE(x, π) · π(x)dF (x).

We can derive the Gateaux derivative of V (π) using the product rule:

∂V (π;h) = lim
δ→0

∫
τ∗CADE(x, π + δh) · [π(x) + δh(x)]dF (x)−

∫
τ∗CADE(x, π) · π(x)dF (x)

δ

= lim
δ→0

∫
τ∗CADE(x, π + δh) · h(x)dF (x) + lim

δ→0

∫
(τ∗CADE(x, π + δh)− τ∗CADE(x, π))dF (x)

δ
(1)
=

∫
τ∗CADE(x, π) · h(x)dF (x)−

∫
∇pτ∗CADE(x, π)dF (x) · ∇pµd(p∗π)−1 ·

∫
h(x)τdCADE(x, π)dF (x)

=

∫
τ∗CADE(x, π) · h(x)dF (x) +

∫
τ∗CAIE(x, π) · h(x)dF (x)

=

∫
h(x)(τ∗CADE(x, π) + τ∗CAIE(x, π))dF (x)
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Step (1) is from the chain rule, and since the Gateaux derivative

∂p∗(π;h) = −∇pE[π(Xi)d(Bi(1), p∗π)− d(Bi(0), p∗π)]−1

∫
h(x)E[π(Xi)d(Bi(1), p∗π)− d(Bi(0), p∗π)|Xi = x]

= −∇pµd(p∗π)−1 ·
∫
h(x)τdCADE(x, π)dF (x)

Since the vector space Π is convex, Theorem 2 of Chapter 7 of Luenberger (1969) indicates that

a necessary condition for a local maximum π∗ is that for all π ∈ Π,

∂V (π;π − π∗) ≤ 0

The remaining steps in the proof follows the proof of Theorem 1 in Munro et al. (2023). Let

ρ(π, x) = f(x)(τ∗CADE(x, π) + τ∗CAIE(x, π)). We can prove by contradiction that the optimal tar-

geting policy must meet the conditions in the theorem. If there is some π̄ that is optimal but does

not meet the conditions in the theorem, then, one of the following must be true:

1. For x in some set Q that occur with non-zero probability, ρ(π̄, x) < 0 but π̄(x) > 0. But then

choose π such that π(x) = π̄(x) for x /∈ Q and π(x) = 0 for x ∈ Q. We have that

∂V (π;π − π∗) =

∫
x∈Q

ρ(π̄, x)(0− π̄(x))dµ(x) > 0,

which contradicts the optimality of π̄.

2. Or, for x in some set P that occurs with non-zero probability, ρ(π̄, x) > 0 but π̄(x) < 1.

Choose π such that π(x) = π̄(x) for x /∈ P and π(x) = 1 for x ∈ P . We have that

∂V (π;π − π∗) =

∫
x∈Q

ρ(π̄, x)(1− π̄(x))dµ(x) > 0,

which contradicts the optimality of π̄.

B Using IV for Identification and Estimation

This section provides a brief discussion of how the setting in the paper is affected when unconfound-

edness does not hold, but there is a binary instrumental variable that affects take-up of a binary

treatment. A more complete statistical analysis of treatment effects under equilibrium-type inter-

ference with instrumental variables is reserved for future work. In an IV setting, we have potential

treatments Wi(1) and Wi(0) that depend on an instrument Zi ∈ {0, 1}. Under a monotonicity

assumption, Wi(1) ≥ Wi(0). Under interference, there are a variety of counterfactuals that can

be defined. One relevant counterfactual when there may be control over the instrument, but not

the treatment directly, is the intent-to-treat effect. This is the effect on average outcomes in the
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sample when all individuals receive the instrument, compared to a setting where no agents receive

the instrument. It can be written in this setting with interference as

τLGTE =
1

n

n∑
i=1

1(Wi(1) > Wi(0))[y(Bi(1), P̃1, Xi)− y(Bi(0), P̃0, Xi)]

+
1

n

n∑
i=1

1(Wi(1) = Wi(0))[y(Bi(0), P̃1, Xi)− y(Bi(0), P̃1, Xi)]

where P̃1 and P̃0 are defined as

op(n
−1/2) =

1

n

n∑
i=1

[1(Wi(1) > Wi(0))d(Bi(1), P̃1, Xi) + 1(Wi(1) = Wi(0))d(Bi(0), P̃1, Xi)− q]

op(n
−1/2) =

1

n

n∑
i=1

[d(Bi(0), P̃0, Xi)− q]

When the market-clearing cutoffs are determined by the aggregate behavior of everyone, then

outcomes of compliers are affected directly by the treatment and indirectly by the change in the

equilibrium. The outcomes of those who do not take up the treatment, however, are also affected

by the changes in preferences of the compliers, due to the equilibrium effect. Using the techniques

in the proof of Theorem 1, we can show that this corresponds to the following moment condition

problem with missing data. Let Ci = 1(Wi(1) > Wi(0)).

0 = τ∗GITT − Pr(Ci = 1)E[y(Bi(1), p̃1, Xi)− y(Bi(0), p̃0, Xi)|Ci = 1]−

Pr(Ci = 0)E[y(Bi(0), p̃1, Xi)− y(Bi(0), p̃0, Xi)|Ci = 0]

0 = Pr(Ci = 1)E[d(Bi(1), p̃1, Xi)− q|Ci = 1] + Pr(Ci = 0)E[d(Bi(0), p̃1, Xi)− q|Ci = 0]

0 = E[d(Bi(0), p̃0, Xi)− q]

The Local Average Treatment Effect (Imbens and Angrist, 1994) -type quantities in this moment

equation can be identified and estimated using standard IV assumptions: overlap, instrumental rel-

evance, and exogeneity. For example, E[y(Bi(1), p̃1, Xi)|Wi(1) > Wi(0)] is a moment that matches

the form of Equation 19 in Appendix A of Kallus et al. (2019). Under the IV identifying assump-

tions, including monotonicity, then a Neyman orthogonal estimation equation for this moment is

given by Equation 22 of Appendix A of the paper. As shown in that Appendix, the LDML esti-

mation approach with three-way data splitting can be used for an asymptotically normal estimate

of this expectation, and nuisance parameter estimation only requires estimating a simple set of

regressions using flexible machine-learning estimates, as in the case with unconfoundedness.

Another possibility, which requires a strong assumption, is to assume that the distribution

of Bi(1), Bi(0)|Ci = 1 is equal to the distribution of Bi(1), Bi(0)|Ci = 0.11 Then, τ∗GTE can be

11This is true if compliance is random in the population. It is likely possible to weaken this assumption in favor
of a treatment effect homogeneity assumption that holds conditional on Xi, see the discussion in Athey and Wager
(2021).
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estimated, rather than τ∗LGTE .

0 = τ∗GTE −E[y(Bi(1), p∗1, Xi)− y(Bi(0), p∗0, Xi)|Ci = 1]

0 = E[d(Bi(1), p∗1, Xi)|Ci = 1]− q

0 = E[d(Bi(0), p∗0, Xi)|Ci = 1]− q

This set of moment conditions fits directly into the framework of Appendix A of Kallus et al.

(2019).

C Simulation Details

The data generating process for the coverage simulation in Section 5.2 is described in this section.

The fractional capacities of the schools are q = [0.25, 0.25, 1.0]. Schools 1 and 2 are high-quality,

with Qj = 1, and capacity constrained, but school 3, which is low quality, with Qj = 0, is not.

The subgroup of interest for the planner is denoted by Ci ∈ {0, 1}. The match value Vij = 2 if

Ci = 1 and Qj = 1, and Vij = 1 if Ci = 0 and Qj = 1, otherwise it is 0. The covariates Xi that are

observed for each individual are 5 standard normal variables, which are Xj,i from j = 1 . . . 5, and

the indicator Ci. Let Φ(·) be the standard Normal CDF. The subgroup indicator is

Ci ∼ Bernoulli(Φ(1 +X3,i))

Those with Ci = 1 have a lower mean utility for quality in the absence of treatment. µL =[
0 0.5 0.5

]>
and µH =

[
1.0 0.5 0.0

]>
. The vector of utilities of individual i for the schools

j ∈ {1, 2, 3} is:

Ui = CiµL + (1− Ci)µH + CiWi

1

0

0

+X>2,i

 0

0

0.3

+ εi

where εi is a three-dimensional vector of standard normal variables. The treatment raises the

probability that an individual with Ci = 1 applies to a high-quality school. The students each

submit a ranking Ri(Wi) over the three schools to the mechanism based on the order of their

utilities Ui. The score for each individual and each school is Sij ∼ Uniform(0, 1), so in the notation

of the general setup, Bi(Wi) = {Ri(Wi), Si)}. Finally, the treatment allocation and outcome

generation, which obeys selection-on-observables, is as follows

Wi ∼ Bernoulli(0.5X3,i − 0.5X2,i + vi)

Yi(W ) =
n∑
i=1

d(Bi(Wi), P (W ))Vij

The noise term vi ∼ Bernoulli(0.5).
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D Empirical Details

Variable Treated Control

income 4.22 4.77
(3.32) (3.82)

ma educ 11.01 11.46
(3.14) (3.14)

pa educ 10.99 11.45
(3.45) (3.45)

ma indig 0.18 0.17
(0.38) (0.37)

pa indig 0.15 0.14
(0.35) (0.35)

hhsize 2.45 2.46
(1.29) (1.27)

latitude -34.36 -34.15
(4.90) (5.04)

longitude -71.47 -71.37
(1.02) (1.03)

Table 5: Summary Statistics for n = 114, 749 applicants to 9th grade in 2020. Wi = 1 indicates a
parent reported they were aware of the performance category of the 8th grade school of their child.
Income is in $100,000 pesos, and education is in years.

56


	Introduction
	Related Work

	Defining Global Effects in Designed Markets 
	Uniform Price Auction
	Deferred Acceptance with Lottery Priority

	Estimating the Global Treatment Effect
	Structural Modeling Approach
	Propensity Score Approach
	Doubly-Robust Approach
	Confidence Intervals

	Targeting in Designed Markets
	Optimal Treatment Rules
	Approximating the Optimal Treatment Rule
	Empirical Value Maximization

	Simulations
	Auction Simulation
	Simulation of a Market for Schools

	Evaluating Interventions in the Chilean School Market
	Data
	Treatment Effect Estimates

	Discussion
	Proofs of Main Results
	Building Blocks
	Proof of Theorem 1
	Proof of Theorem 5
	Proof of Theorem 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 6 

	Using IV for Identification and Estimation
	Simulation Details
	Empirical Details

