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Abstract

Lasso is increasingly found in the economics literature, but boosting, which is
a simple and flexible high-dimensional estimation procedure that has been used
successfully in genetics, computer science, and other fields, is not familiar to most
economists. I describe the close theoretical ties between a linear varient of general
gradient boosting, L2-Boosting, and lasso and the conditions required for each to
guarantee prediction and model selection consistency. For the first time in the
economics literature, I compare the performance of boosting and lasso for both
variable selection and prediction accuracy. Furthermore, I address the specific issues
that arise under block-correlation typically found in macroeconomic datasets. In
simulations, I find that lasso selects a more parsimonious model that is closer to the
truth while maintaining prediction accuracy. In an application to forecasting series
in the FRED-MD dataset, I find that the forecasting performance of L2-boost and
lasso are close to equivalent at 1 month forecast horizons and significantly better
than the AR baseline, with mixed results at the 6 month horizon. There are some
indications that a non-linear form of gradient boosting has the best performance
for longer time horizons. Since I show that lasso and boosting are not stable under
correlated data and lack of sparsity, I describe how for macroeconomic data the
variable selection output can be interpreted more robustly by aggregating variables
in groupings.
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1 Introduction

Estimation of reduced form models has a variety of applications in macroeconomics; two

primary ones are model selection and forecasting. New challenges arise in the estimation of

these models when the predictor set is very large, especially in situations where the number

of predictor variables is larger than the number of observations when OLS is not tractable.

With a large number of potential predictor variables, many of which are highly correlated

in high-dimensional macroeconomic datasets, it is difficult to distinguish between true zero

and non-zero variables; furthermore, the variance introduced by adding too many variables

can result in poor out-of-sample forecasting performance if not managed appropriately.

Some traditional methods have been applied to select models in high-dimensional settings:

for example, statistical methods like Autometrics (Doornik & Hendry, 2015). Common

factor models have also been used with success to forecast macroeconomic series using

predictor sets that are highly correlated (Stock & Watson, 2002a), (Stock & Watson,

2002b). However, statistical methods like Autometrics are computationally intensive,

and factor models, while providing good forecasting performance, don’t provide direct

variable selection that is often useful in interpreting the results from the estimation of

reduced form models.

Economists working with high-dimensional data have increasingly used machine learn-

ing methods that simultaneously provide variable selection and estimation, such as lasso

regression, ridge regression, and boosting. These methods can handle very large datasets

with computational efficiency. Lasso and boosting generally have been shown to have

comparable or lower mean-square forecast error (MSFE) in prediction tasks compared

to factor and simple linear methods, but also provide directly interpretable output (Li

& Chen, 2014), (Wohlrabe & Buchen, 2014). There has not been, however, a system-

atic comparison of lasso and boosting in the literature that also examines the limits of

their performance under collinearity and lack of sparsity that occurs in high-dimensional

macroeconomic data.
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In this paper, I study the performance of lasso-type measures and a linear form of

boosting, L2-Boost, in a macroeconomic prediction context where the accuracy of variable

selection also matters. Ng (2013) reviews criterion-based, regularization, and dimension

reduction methods of selecting predictors in a high-dimensional context using simulations

and describes the unresolvable tradeoff between prediction accuracy and consistent model

determination. It has been theoretically proven that it is not possible to select one criterion

(Yang, 2005) nor one regularization parameter for lasso (Meinshausen & Bühlmann, 2006)

that is optimal for both prediction accuracy and variable selection. Though it has not yet

been shown explicitly, boosting likely has the same optimality trade-off for the stopping

parameter. It is still interesting, however, to determine which methods have the ability

to perform both tasks well, even if optimal performance for both is not possible.

Both lasso and L2-Boost are known to be consistent for prediction under a spar-

sity condition. Results are available for model selection consistency for lasso but only

under strict restrictions on the correlation of the predictors that are not likely to hold

in macroeconomic data. The LARS algorithm of Efron et al. (2004) united lasso and

forward stagewise regression, a variant of L2-Boosting. Freund et al. (2017) and Hastie

et al. (2007) have separately showed that there are strong theoretical links between linear

boosting and lasso; the former shows each are the solution to a problem by subgradient

optimization and the latter shows each are differential equations that are optimal in terms

of a local optimization procedure. These authors show that a) there are versions of lasso

that provide the same solution as L2-Boost under restrictions on the path of the lasso

coefficients as the regularization parameter varies and b) there are restricted versions of

linear boosting that provide the same solution as lasso. Understanding these theorems

provides motivation for studying the variable selection and prediction performance of lasso

and boosting together when dealing with difficulties in high-dimensional macroeconomic

data, such as collinearity and lack of sparsity.

Lasso is known to have issues with stability of coefficients and model selection consis-
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tency under lack of sparsity and collinearity; this is shown in simulations and applications

to dense macroeconomic data by Giannone et al. (2017) and by Li & Chen (2014). With

slight perturbations of the data or changes in time window, the predictors selected by lasso

can change dramatically. This issue can be mitigated by using grouped lasso or elastic

net, but grouped lasso forces a manually determined structure on the lasso penalty term

that may not be desirable in a prediction context (Callot & Kock, 2014), and elastic net

still has stability issues as the penalty term is varied, which I will describe using Monte

Carlo simulations. Furthermore, alternative estimators for high-dimensional datasets such

as dynamic factor models (Stock & Watson, 2002a), do not provide output that is easily

interpretable for economic data. Boosting, on the other hand, has been studied less in the

economics literature, but has been used with great success for prediction of categorical

variables in the computer science literature. Given its close theoretical links to lasso, one

would expect that boosting would have some of the same difficulties in dense and collinear

economic applications. However, one of the key differences between lasso and boosting is

that boosting has a monotone coefficient path as the regularization parameter varies. I

examine the nuances of this theoretical difference in both simulations and applications to

macroeconomic forecasting. Along with L2-Boosting and lasso, I also examine the perfor-

mance of a non-linear form of boosting, tree boosting, and elastic net, which is a variant

of lasso that was designed to better handle groups of correlated variables.

In simulations, I find that the performance of L2-Boosting is even more sensitive than

lasso or elastic net to density in a block-correlated data generating process. The variable

selection results of all methods worsen under increased density and correlation. Though

significant issues arise in all methods, lasso performs the best in both prediction and model

selection when variables are highly correlated and the data generating process isn’t sparse.

However, under sparsity and reasonable collinearity L2-boosting performance is equivalent

to regularized regression. I find that, in applications to forecasting 4 macroeconomic

series (real production, unemployment, price and interest rate series) from the FRED-MD
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database (McCracken & Ng, 2016) 1, 3, and 6 months ahead, the linear high-dimensional

methods generally perform better than no-change or AR baselines, especially at the 1

month horizon, and that L2-Boosting, elastic net, and lasso have similar MSFEs, with

no method consistently beating the others. The results indicate that linear models in

general beat more flexible non-linear alternatives such as boosted regression trees at short

time horizons, but that the non-linear boosting method does not overfit substantially. For

the 3 month horizon, where linear methods do not perform better than the AR model,

tree boosting shows marginal improvement. In selecting variables for the 1 month ahead

forecasts, the results are nearly identical for lasso and boosting, which, before examining

the theory behind the methods, would be surprising given the very different formulation

of the estimation algorithms for lasso-type methods and boosting.

Aggregating variables by the groups defined in the Fred-MD appendix results in clear

interpretation that is less likely to be muddled by issues with the correlation of the indi-

vidual series, since the blocks have low correlation between them. For example, the results

indicate that increases in output, employment and decreases in financing costs are most

closely associated with 1 month ahead increases in industrial production, which closely

follows economic intuiton. I posit, though I do not prove, that lasso and L2-Boost are

block-consistent, meaning they correctly select variables at a block-level. I also conduct

robustness checks on the variable selection results using OLS and factor model alterna-

tives. I find that the top variables selected by lasso and L2-Boost are highly significant in

an OLS regression. Using simple PCA-based methods to select group-specific factors, an

alternative to aggregating results in groups from high-dimensional estimation methods,

does not perform well.

Section 2 reviews related work. Section 3 describes gradient boosting and penalized

regression and interprets the methods from the perspective of various kinds of general

optimization methods. Section 4 provides an overview of the theoretical results for pre-

diction and model selection consistency and for the relationship between boosting and
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lasso which motivate the applied work. Section 5 provides Monte Carlo simulations that

illustrate the issues that arise in collinear high-dimensional time series settings. Section 6

provides an application of boosting and lasso methods to prediction and variable selection

for forecasting four U.S. macroeconomic series.

2 Related Work

In this section, I briefly describe the literature on boosting and lasso for economic forecast-

ing, and other approaches that have been suggested when dealing with block-correlated

datasets.

Boosting

In the economics literature, boosting has been used for financial time series forecasting,

but the literature on boosting for macroeconomic forecasting is rather sparse. For binary

dependent variables, Ng (2014) used AdaBoost with decision stumps on a database of 132

U.S. financial and real series to identify important predictors for U.S. recessions 3m, 6m,

and 12m ahead and Dopke et al. (2017) uses boosted decision trees to predict German

recessions with lower out of sample performance than probit approaches. Both papers look

at which variables boosting selects as important, using Friedman’s importance coefficient

for boosting with decision trees, and finding that term spreads, as expected, are the most

important predictors of recessions.

For continuous dependent variables, Bai & Ng (2009) uses boosting to select predictors

in factor-augmented regressions and finds that prediction performance is improved by the

boosting selection method compared to criterion-based techniques. Wohlrabe & Buchen

(2014) tests the forecasting performance of boosting for U.S., Euro area and German data

and Buchen & Wohlrabe (2011) evaluates boosting compared to dynamic factor models

and model averaging methods for forecasting U.S. industrial production. Lehmann &

5



Wohlrabe (2017) uses boosting to forecast regional German economic indicators and finds

that boosting outperforms the benchmark for regional economic forecasting. Robinzonov

et al. (2012) uses boosting with nonlinear base learners in a high-dimensional time se-

ries setting to estimate nonlinear lag functions. Taieb et al. (2014) proposes a boosting

autoregression procedure and evaluates performance in two time series forecasting com-

petitions. Few of the papers in the boosting forecasting literature attempt to evaluate the

prediction models in terms of variable selection, apart from Lehmann & Wohlrabe (2016)

which looks at counts of how often a variable is selected to forecast German industrial

production at different time horizons to determine which are important.

Lasso

Li & Chen (2014) evaluate the performance of several lasso-based approaches, including

regular lasso, grouped lasso, and elastic net, compared to dynamic factor models for

twenty U.S. macroeconomic variables. They find that lasso approaches are better than

dynamic factor models in out of sample forecasting exercise and that combining lasso

and dynamic factor model forecasts are better than either method individually. They

also suggest manually grouping predictors into economically meaningful blocks and using

group lasso or elastic net to improve the interpretability and stability of such models.

Callot & Kock (2014) evaluate the forecasting accuracy and variable selection of lasso and

some of its variants, adaptive and adaptive group lasso on a large U.S. macroeconomic

dataset. They analyze the performance of the methods for different groups and find that

lasso performs best, but the adaptive versions perform similarly to factor models. Kim &

Swanson (2011) uses recursive estimation to test the predictive accuracy of a variety of

models based on principal components or shrinkage methods, including lasso, boosting,

elastic net, factor models, and various model combination methods. They find that factor-

augmented models constructed with shrinkage methods, such as those introduced in Bai

& Ng (2009), have the lowest out of sample error when predicting eleven macroeconomic
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variables at various time horizons.

Models for Block-Correlated Data

Variants of lasso have been proposed to vary the penalty term to better account for

blocks of related variables in data, such as elastic net, grouped lasso and the adaptive

grouped lasso (Zou & Hastie, 2005), (Yuan & Lin, 2006), (Wang & Leng, 2008). I include

elastic net in the simulation and application results. Factor models taking into account

the block-structure of economic data have also been introduced. For example, Moench

et al. (2013) introduces a hierarchical model that includes block-specific factors within

economically-meaningful blocks along with common factors to increase interpretability of

dynamic factor models. I use a simplified version of the model to test the robustness of

the variable selection results in Section 6. Bai & Ng (2009) derives Block Boosting from

modifying the typical linear boosting procedure in a factor augmented regression setting

to take into account the relationship between a variable and its lags.

Comparing Approaches

In the biostatistics literature, Hepp et al. (2016) compare the performance of variable

selection stability and forecasting for L2-boosting and lasso in a variety of simulated

settings, varying collinearity, true sparsity, and signal-to-noise ratio, and finds that results

are similar for both methods. Ng (2013) studies model selection and prediction together in

a high-dimensional simulation using monte-carlo methods and finds that factor methods

perform more accurately at both tasks when the data generating process is dense, and

that regularization methods perform better when the data generating process is sparse.
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3 Model and Methods

In this section, I introduce the model and notation used in Sections 5 and 6. I also describe

the estimation procedures in detail, which is necessary for understanding the theory in

Section 4 and the results in Section 5 and 6.

3.1 Notation

Let x be a vector in Rn. ||x||2 =

√
n∑
i=1

(xi)2, ||x||22 =
n∑
i=1

(xi)
2, ||x||1 =

n∑
i=1

|xi|, ||x||∞ =

maxi |xi|.

3.2 Model

For the forecasting simulations and predictions below I used restricted versions of the

below predictive model, which is common in the forecasting literature. yt from t = 1, . . . , T

is the stationary-transformed, continuous-valued, target variable. There are V variables

xit from t = 1, . . . , T available that can potentially explain yt, along with their lags and

lags of yt itself, up to a maximum of K lags.

yt+h = β00 +
K∑
k=0

αkyt−k +
V∑
i=1

K∑
k=0

βikxi,(t−k) + εt+h, t = 1, . . . , T (3.1)

To simplify the notation in xt denote the p = (V ∗ (k + 1) + (k + 1) + 1) row vector

of RHS variables for yt+h at time t and let β denote the possibly sparse vector of RHS

parameters relating the predictors to yt+h. It is possible that p >> T and that xt contains

many collinear predictors. The above equation is summarized as

yt+h = xtβ + εt+h, t = 1, . . . , T (3.2)
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3.3 Estimation Methods

In the machine learning literature that derived lasso and boosting, procedures for esti-

mating predictive functions for a dependent variable from a set of possible predictors are

known as learning algorithms when the performance of the method improves with addi-

tional data. A simple learning algorithm is linear regression, for example. A learning

algorithm takes as input a labeled sequence of training examples (x1, y1), . . . , (xT , yT ) and

uses these to construct a function φ(xt) that will classify new instances xt. yt may be

categorical, binary, or real-valued. Each of the below models is a learning algorithm for

continuous yt that has applicability to high-dimensional problems, where the dimension

of xt, p, is larger than T .

3.3.1 Lasso-Type Methods

Given observations on yt and each of p observed predictors xt = (xt1, ..., xtp) for t =

1, . . . , T . Under p >> T , OLS is not defined, since it requires the X ′X/T to be positive

definite. Furthermore, in high-dimensional collinear settings, even when p < T , OLS does

not perform well for prediction or interpretation. Tibshirani (1996) proposed L1 penalized

regression, which performs variable selection and model estimation simultaneously, and

shows improved performance in prediction and model parsimony compared to OLS due

to reduction in variance introduced by the penalty term, λ, at the cost of the introduction

of bias.

β̂(lasso) = arg min
β

T∑
t=1

(yt − xtβ)2 +

p∑
j=1

λ|βj| (3.3)

The resulting lasso function is φ̂(lasso)(xt) = xtβ̂
(lasso)

Elastic Net

Zou & Hastie (2005) propose elastic net to address some of the issues that lasso has when
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predictors are high-dimensional and correlated. I don’t provide theoretical results for

elastic net since it is considered as part of the lasso family; however, given it has been

proposed to improve prediction performance in the context of collinear predictors I in-

clude it the simulation and application result. Lasso tends to select only one of a group of

correlated predictors and switches between them with small changes to the regularization

parameter (see Section 5). Elastic net, on the other hand, tends to select correlated vari-

ables in groups. The elastic net estimator is defined by the below minimization function.

α is the weight on the l1 penalization and 1− α is the weight on the l2 penalization and

λ is the penalization term on the size of the coefficients.

β̂(enet) = arg min
β

T∑
t=1

(yt − x′tβ)2 + αλ

p∑
j=1

|βj|+ (1− α)λ

p∑
j=1

(βj)
2 (3.4)

The elastic net function is φ̂(enet)(xt) = x′tβ̂
(enet)

3.3.2 Gradient Boosting

My paper is mainly concerned with determining how boosting compares theoretically

and in an applied sense to lasso and its variants, since boosting is not yet very familiar

to economists and has performed very well in prediction in other disciplines. Boosting

makes a prediction by efficiently combining the predictions of many simple models, known

in the machine learning literature as weak learners. For modeling a continous dependent

variable, there are a variety of weak learners available, including single variable linear

regressions, and non-linear learners such as k-splines and regression trees. Boosting is

very modular and can be used to model a variety of dependent variable types; for binary

variables, for example, boosting combines classifiers like single variable logistic regressions

or shallow decision trees.

The first form of boosting was AdaBoost, which has been used for binary classifica-

tion succesfully and minimizes a form of exponential loss, and is due to Freund et al.
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(1996). After the applied success of AdaBoost, a significant amount of work went into

understanding the properties of boosting in a game theoretic and online learning context

(see Schapire & Freund (2012) for a good overview), as well as generalizing the algorithm

to different loss functions and to categorical and continuous dependent variables. The

general form of gradient boosting presented below for modeling functions of continuous

variables is due to Friedman (2001). I also clarify at each step the choices that will give

L2-Boost, which is the linear form of boosting that I focus on in this paper.

Given observations on yt and each of p observed predictors xt = (xt1, ..., xtp) for t =

1, . . . , T , let φ(xt) be a function on Rp and C(yt, φ(xt)) be the loss function that penalizes

the deviation of φ(xt) from yt. For L2-Boost, choose the error function C(yt, φ(xt)) =

1
2
(yt − φ(xt))

2, which is the quadratic loss function. The following steps give the solution

to the gradient boosting algorithm.

1. φ̂0(xt) = ȳ

2. For m = 1, . . . ,M

• For t = 1, . . . , T , compute the negative gradient vector

u
(m)
t =

−δC(yt, φ)

δφ
|φ=φ̂m−1(xt)

. (3.5)

Under the quadratic loss function u
(m)
t = yt − φ̂m−1(xt);

• Fit a base learner to the gradient vector to yield the update for φ̂m. For

L2-Boost, the base learner is a single variable regression. Calculate

β̂jm =

T∑
t=1

xjm,tu
(m)
t

T∑
t=1

x2
jm,t

,
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a single variable regression coefficient, where

jm = arg min
1≤j≤p

T∑
t=1

(u
(m)
t − β̂jxjt)2

and corresponds to the index of the single variable that is most correlated to

the current residuals u
(m)
t . For L2-Boost, gm(xt) = xjtβ̂jm

3. Update φ̂m(xt) = φ̂m−1(xt) + vgm(xt), where 0 ≤ v ≤ 1 is the step length.

Under quadratic loss function and with single variable regression as the base learner,

the algorithm is known as L2-Boost. Forward stagewise linear regression (FSLR), which is

closely related to L2-Boost and will be discussed when evaluating the connections between

lasso and boosting, is formed from the same procedure except that gm(xt) = sign(β̂j)xjt.

For FSLR, the coefficient update on xjt is made in the direction of the coefficient β̂j but

always at a constant size of v. For L2-Boost, it is made in the direction of the coefficient

but at a variable size of vβ̂j.

Under L2-Boost, the final classifier can be expressed as the linear function φ̂(l2boost)(xt) =

xtβ̂
(l2boost), where β̂(l2boost) = [β̂1, . . . , β̂p] and for i = 1, . . . , p

β̂
(l2boost)
i =

M∑
m=1

β̂jm1(i = jm) (3.6)

L2-Boost can be intepreted as a cautious version of Forward Stepwise regression, which

is another well-known method that is a variant of L2-Boost with stepsize v = 1. A model

estimated with Forward Stepwise regression is built sequentially by adding one variable

at a time that is most correlated with the current residual.

Regression trees can also be used as base learners, gm(xt), in the gradient boosting

algorithm instead of single variable regressions as for L2-Boost. A rigorous description

of regression trees is too extensive for the scope of this work; instead, a basic overview

follows1. A regression tree for boosting at step m in the boosting algorithm takes as

1See Athey & Imbens (2015) for a more extensive description of regression trees in an economic context
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input a target variable, which are the residuals u
(m)
t , and each of p observed predictors

xt = (xt1, ..., xtp) for t = 1, . . . , T . Boosted regression trees create a non-linear estima-

tor of u
(m)
t that allow for interaction terms between predictor variables and other, more

complex linearities. If the true generating process is not linear, then regression trees may

outperform single variable regressions as a base learner. A regression tree is made up a

series of nodes, with splits defined as thresholds on the predictors. The splits eventually

lead to a terminal node, which is a node with no splits following it, defined as a leaf,

which assigns a value to an observation that reaches it. To estimate using a regression

tree, an observation starts at the initial node and follows the splits until it is assigned the

value for the dependent variable at the first leaf reached. The maximum number of splits

from the top of the tree to the leaves of the tree is the depth of the tree. Figure 1 shows

an example tree of depth two. The initial parent node splits into two child nodes based

on the observation’s value for x3t. Then, the tree either assigns a value, or splits again

on x1t, depending on which branch was followed from the split on x3t. Each of the leaves

give the mean of the target variable for the partition of the training sample that reaches

that leaf of the tree.

3.2

x1t < 1

1.7

x1t ≥ 1

x3t < 2

0.3

x3t ≥ 2

Figure 1: Sample Regression Tree

Let leaves(B) be the set of terminal nodes of a tree B. Let tc be the set of indices

corresponding to observations that are assigned to leaf c based on the splits defined for B.
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Note that a regression tree partitions the set of training examples so that each training

example only reaches one leaf of the tree. The sum of squared errors for a tree B is

S =
∑

c∈leaves(B)

∑
j∈tc

(u
(m)
j −mc)

2

where mc = 1
nc

∑
j∈tc

u
(m)
j which is the prediction for leaf c and nc is the number of indices in

tc. The standard regression tree growing algorithm with maximum depth D in a recursive

formulation (adapted from Shalizi (2006)) is:

1. Start with single node containing all points.

2. For the node, calculate mc and S.

3. If all points have the same value for the dependent variables, or if the node is at

the maximum depth of the tree D, stop. Otherwise search over all single variable

binary splits (of type xit ≥ a, xit < a) to find the variable and the split that reduces

S the most. If it is less than some threshold δ or if one of the resulting two nodes

contains less than predefined q points then stop. Otherwise, split, creating two new

nodes.

4. For each new node, return to step 2.

3.3.3 K-fold Cross-Validation

K-fold cross validation is common in machine learning and is used in non-parametric

regression; however, it is not familiar to all econometricians so I give a brief introduction

here. Leave one-out cross validation, where the number of subsets K in the process

described below is equal to the sample size, has been shown to be equivalent to AIC

when the model is estimated by maximum likelihood (Stone, 1977). Model-based criteria

generally work better if the model is fully and correctly specified, but cross-validation

generally works better in practice due to its flexible and non-parametric form. 10-fold
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cross-validation is used since it is the standard in the machine learning community and

has been shown to provide better results than more computationally expensive methods

such as leave-one-out cross validation (Kohavi et al. , 1995). I use 10-fold cross-validation

to select the regularization parameters for lasso and for boosting for all of the simulation

and application results. In cross-validation, the regularization parameter chosen is the one

that minimizes the estimated prediction error in the cross-validation task. The method

proceeds as follows:

• Split the dataset into K subsets, with the members of each subset chosen randomly

• For each regularization parameter in a reasonable prespecified range :

– For each of the K subsets, estimate the model on the other K − 1 subsets and

calculate the mean squared error on the subset that is held out from the model

estimation. Average the out of sample error across the K subsets.

• The regularization parameter chosen is the one that minimizes the average out of

sample error across the K folds.

3.4 Computation

Programming for this paper has been done in R. The estimation of elastic net and lasso

models and cross validation are done using the R package glmnet (Friedman et al. , 2010),

the estimation of L2-boosting is done using the R package mboost (Hothorn et al. , 2012)

and tree boosting with gbm (Ridgeway, 2007). Computation of a single boosting, lasso,

or elastic net model is efficient under the scenarios considered in the simulation and

application, where T ranges from 200 to 700 and N ranges from 120 to 1000. However,

under the forecasting simulations, hundreds of cross-validations are performed, and many

tens of thousands of boosting, lasso, and elastic net models have to be estimated. This

process is infeasible on a laptop computer.
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To improve computation speed I have deployed R on a c4.2xlarge Amazon EC2 in-

stance, which is a mid-tier Amazon cloud server optimized for computation with 8 cores.

I parallelized the computation of the mean forecast errors across those 8 cores using R

package doParallel (Weston, 2014). This reduced computation time for calculating Mean

Square Forecast Error vs. the baseline model for cross-validated high dimensional models

on one macroeconomic series at one time horizon to a few hours from many days.

The code for the simulation and application results is available upon request.

4 Theory

In this section I describe the basic properties of boosting and penalized regression for

variable selection and prediction, as well as the links between the different methods. For

the following section, the notation and results are presented for cross-section data. It is

left to future work to confirm that all of the results presented can be adapted to a high-

dimensional time series setting; existing work like Basu et al. (2015) and Kock & Callot

(2015) suggest that related results can be derived for consistency in high-dimensional

time series settings. Furthermore, for clarity, I focus on the basic forms of lasso and L2-

Boost, rather than also discussing variants of lasso such as elastic net or nonlinear forms

of boosting.

4.1 Consistency

Both lasso and boosting are consistent for prediction in high-dimensional models, under

a potentially reasonable assumption of sparsity in the true coefficients. However, consis-

tency for model selection requires assumptions that are much more strict for both boosting

and lasso, and are not likely to hold in most real-world situations.

A brief discussion of consistency is required before proceeding to the results, adapted

from Zhao & Yu (2006). Let f(X; β) = Xβ+ε be a linear regression model parameterized
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by β. X is n × p. An estimation procedure giving an estimator β̂ is consistent for

prediction if

f(X; β̂)− f(X; β)→p 0, as n→∞

An estimator β̂ with true parameter β is estimation consistent if

β̂ − β →p 0, as n→∞

A set of estimates is consistent for model selection if

P ({i : β̂i 6= 0} = {i : βi 6= 0})→ 1, as n→∞

None of these definitions imply the other. A model estimation method can be predic-

tion consistent, but not consistent in terms of model selection or parameter estimation, for

example by substituting predictors outside the true model for predictors in the true model

that are correlated with those outside the true model. A model estimation method that

is consistent in terms of model selection may not be prediction consistent if the correct

coefficients are selected but all with a constant bias, for example.

Our discussion below focuses on prediction consistency and a slightly stronger form

of model selection consistency, sign consistency, but does not describe the properties of

lasso and boosting in terms of parameter estimation consistency, since our results focus on

the tradeoff between prediction and variable selection in high-dimensional macroeconomic

forecasting and are not concerned with recovering the exact values of all parameters.

A note on the notation for sign consistency in the following sections:

β̂ =s β
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if and only if

sign(β̂)− sign(β)→p 0, as n→∞

where sign for a vector in Rp is a function returning a p-length vector containing the

sign for each element of the input vector. This will be used to define a slightly stronger

former of model selection consistency; rather than the estimated parameter β̂ just setting

the correct variables to zero, for the predictors in the true model, an estimator that is

sign consistent also estimates the correct sign asymptotically.

4.1.1 Lasso Prediction Consistency

Bickel et al. (2009) derives a bound for lasso’s prediction risk in high dimensional settings

for non-random X.

Consider the linear model

yi = Xiβ + εi, i = 1, . . . , n (4.1)

Let X be the n × p matrix of predetermined covariates, where p > n. Defining

some additional notation is required. Let M(β) be the sparsity (the number of non-zero

coefficients) in a vector of coefficients β, and s be an upper bound on M(β). Let J0 be

the indices of the nonzero coefficients of the true parameter β in the model.

Definition 4.1. The Restricted Eigenvalue Condition holds for 1 ≤ s ≤ p and a

positive number c0 for δ = β̂ − β when:

κ(s, c0) = min
J0⊂1,...,p,|J0|≤s

min
δ 6=0,||δJc

0
||1≤c0||δJ0 ||1

||Xδ||√
n||δJ0||2

> 0 (4.2)

This condition roughly means that the columns of X cannot be too correlated (Tib-

shirani, 2015).

Theorem 1 (Bickel et al. (2009) ). Let εi be i.i.d. N(0, σ2) random variables. Let the
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diagonal elements of X ′X/n be equal to 1, and let M(β) ≤ s, where 1 ≤ s ≤ p, n ≥ 1,

p ≥ 2. Let the restricted eigenvalue condition be satisfied for c0 = 3. Consider the lasso

estimator β̂(Lasso) with

λ = Aσ

√
log(p)

n

and A > 2
√

2. Then, with probability at least 1− p1−A2/8,

||X(β̂ − β)||22 ≤
16A2

κ2(s, 3)
σs log p (4.3)

This result gives the finite sample result for the prediction risk. Dividing the result by

n, it is clear that, as long as s, the upper bound on the number of non-zero coefficients

in β, grows sufficiently slowly with n, then lasso is consistent for prediction. Tibshirani

(2015) unites this specific result and the related work by Greenshtein & Ritov (2004) and

others in a basic asymptotic sense. For

λ = Aσ

√
log(p)

n

and under the assumption that the norm of the column vectors of X, ||Xj||22 = n, for

j = 1 . . . p (which is trivial and can be achieved by normalizing X):

||X(β̂ − β)||22/n = OP

(
σ

√
log p

n
||β||1

)
(4.4)

As long as the l1 norm of the true coefficients ||β||1 grows slower than
√
n/ log(p) then

lasso is consistent for prediction.

This result and the links to the various oracle inequalities derived by statisticians under

different but related assumptions are presented in more detail in Bühlmann & van de Geer

(2011).

19



4.1.2 Lasso Model Selection Consistency

Zhao & Yu (2006) show that lasso selects the correct model under restrictions on the sam-

ple covariance matrix and regression coefficients, known as the Irrepresentable Condition

(IC). Meinshausen & Bühlmann (2006) have a similar result for random regressors under

a related condition, known as the neighborhood stability condition. I describe Zhao &

Yu (2006)’s results here. The IC requires that predictors that are not in the true model

can’t be represented by predictors that are in the true model.

Consider the linear model

yi = Xiβ + εi, i = 1, . . . , n (4.5)

where εi are i.i.d. with mean 0 and variance σ2. Xi is a pn-dimensional vector of

explanatory variables. β is a pn dimensional vector of coefficients. pn can grow as the

sample size grows. Let X be the n× pn matrix of explanatory variables.

Definition 4.2. Lasso is Strongly Sign Consistent if there is λn = f(n) such that

lim
n→∞

P (β̂(λn) =s β) = 1

To define the Strong Irrepresentable Condition, which is a necessary condition for

strong sign consistency for lasso, some additional notation is required. Let β = (β1, . . . , βqn , βqn+1, . . . , βpn)′

where βj 6= 0 for j = 1, . . . , qn and βj = 0 for j = qn + 1, . . . , pn. Let X(1) and X(2) be

the first qn and the last pn− qn columns of X. Let C11 = 1
n
X(1)′X(1), C22 = 1

n
X(2)′X(2),

C12 = 1
n
X(1)′X(2), and C21 = 1

n
X(2)′X(1).

C =

C11 C12

C21 C22


Definition 4.3. For the Strong Irrepresentable Condition to hold, there must exist
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a positive vector η such that

|C21(C11)−1sign(β(1))| ≤ 1− η

where 1 is a pn−qn vector of 1’s. The Strong Irrepresentable Condition is not something

that can be verified in practice given it relies on knowing which covariates are in the true

model; it can be interpreted, however, as a constraint on the regression coefficients of

the irrelevant covariates when regressed on the relevant covariates. Zhao & Yu (2006)

describe some constraints on the correlation structure of the covariates in a series of five

corollaries that are sufficient for the Strong Irrepresentable Condition to hold. I present

one below and leave the complete results for the reader to consider in the original paper.

Corollary 1 (Zhao & Yu (2006)). Suppose β has qn nonzero entries. C has 1s on the

diagonal and the covariates have bounded correlation |rij| ≤ c
2q−1

for 0 ≤ c < 1, then the

Strong Irrepresentable Condition holds.

So, for IC to hold, the correlation between covariates must be bounded, and this bound

decreases as qn, the density of the true model, increases. For large values of qn the bound

may be too small to be feasible in practice; so both sparsity and lack of collinearity are

necessary for IC to hold, which is in turn necessary for lasso to be sign consistent for

model selection. This result is relevant to the block-correlated correlation matrices that

I will explore later in the applied section. In the simulations described, the theoretical

tradeoff between q and the maximum correlation r will be made explicit.

There are 4 further assumptions necessary for the result. Assume there exists 0 ≤

c1 ≤ c2 ≤ 1 and M1,M2,M3,M4 > 0 so that:

1. 1
n
(Xi)

′(Xi) ≤ M1∀i, which is trival since normalizing covariates can always achieve

this.

2. α′C11α ≥ M2, for ||α||22 = 1, which is a condition on the eigenvalues for relevant

covariates that ensures the inverse of C11 is well behaved.
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3. qn = O(nc1), which is a sparseness condition.

4. n
1−c2

2 mini=1,...,qn |βi| ≥M3, a beta-min condition.

Theorem 2 (Zhao & Yu (2006)). Consider the model (4.7) satisfying assumptions (1)-(4).

Assume εi have a finite 2k’th moment E(εi)
2k <∞. The Strong Irrepresentable Condition

implies that lasso has strong sign consistency for pn = o(n(c2−c1)k). More specifically, for

any λ that satisfies λ√
n

= o(n
(c2−c1)

2 ) and 1
pn

( λ√
n
)2k →∞, then:

P (β̂(λ) =s β) ≥ 1−O
(
pnn

k

λ2k

)
→ 1, as n→∞

Under a beta-min condition, a restriction on correlation between the covariates (the

strong IC), and some additional technical assumptions, lasso is strongly sign consistent.

However, these are highly restrictive assumptions in practice for economic data. As the

applied section will show, for large macroeconomic datasets, where data generating pro-

cesses for individual series may be dense rather than sparse (see Giannone et al. (2017),

and where covariates are block-correlated, lasso is not likely to be strongly sign consistent.

4.1.3 Boosting Prediction Consistency

Bühlmann (2006) proves that boosting is consistent for prediction in high-dimensional

settings when X is predetermined. Let Xi be a pn-dimensional vector for i = 1, . . . , n

Consider the linear model

yi = Xiβn + εi, i = 1, . . . , n (4.6)

where X is n × p, X1, . . . , Xn are i.i.d. with E|Xj|2 = 1 for all j = 1, . . . , pn and

E(ε′X) = 0 and E(ε) = 0. The number of predictors pn is allowed to grow with sample

size n. The following assumptions are made:

1. The dimension of the predictor set satisfies pn = O(exp(Cn1−ψ)), for n → ∞, for
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some 0 < ψ < 1, 0 < C < ∞. This allows the predictor dimension to be large and

grow with the sample size.

2. supn∈N
pn∑
j=1

|βj,n| <∞. This is a sparseness condition. There can be many predictors

that are relevant, but if so most must contribute with only small magnitudes.

3. sup1≤j≤pn,n∈N ||Xj||∞ <∞, where ||X||∞ = supω∈Ω|X(ω)| and Ω denotes the under-

lying probability space of the covariates.

4. E|ε|s <∞ for some s > 4/ψ with ψ from (1).

Theorem 3 (Bühlmann (2006)). Consider the model (4.5) satisfying assumptions

(1)-(4). Then, the boosting estimate φ̂(m)(·) with the componentwise L2-boost proce-

dure from Section 3.3.2 satisfies; for some sequence (mn)n∈N with mn →∞ as n→

∞ sufficiently slowly,

EX |φ̂(m)(X)− fn(X)|2 = op(1), as n→∞ (4.7)

where X denotes a new predictor variable, independent of and with the same distri-

bution as the X-component of the data (Xi, yi), i = 1, . . . , n.

4.1.4 Boosting Model Selection Consistency

It is still an open question whether or not L2-Boost is consistent for model selection

(Bühlmann & Hothorn, 2007). Ing & Lai (2011) study the properties of a variation of L2-

Boost, which they call the orthogonal greedy algorithm (OGA). This algorithm, similar

to L2-Boost, is a stepwise process that chooses the variable that is most correlated to the

residual at each stage. Unlike L2-Boost, to update the prediction function, rather than

using a simple single variable regression, OGA sequentially orthogonalizes the selected

variables. They prove that, under a beta-min condition, with probability approaching 1,

the variables chosen by OGA contain all the relevant variables.
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It is left to future work to determine if a similar proof is possible for L2-Boost. The

results of Ing & Lai (2011) suggest that some sort of beta-min condition would be neces-

sary. However, it is unclear whether the strict limits on the correlation of the variables

inside and outside the true generating process required for lasso to be consistent are also

necessary for unmodified L2-Boosting. The next section of theory describes the close re-

lation that boosting has with L1 penalization methods, which suggests that boosting also

has some difficulties with variable selection in high-dimensional, collinear settings.

4.1.5 Discussion

I present results for the prediction risk for lasso in finite sample and asymptotically,

while for boosting I just describe the asymptotic prediction risk. The expected prediction

error of lasso in finite samples worsens under correlation of the covariates and decreasing

sparsity. However, asymptotically, the prediction consistency of lasso depends only on the

l1 norm of the coefficients growing sufficiently slowly; this is the same as the main condition

for L2-Boost to be consistent for prediction. So, under large samples, I expect that L2-

Boost and lasso-family methods would perform similarly well, even in block-correlated

and potentially dense macroeconomic data. Under finite samples, it is unclear whether

or not boosting will have the same limitations as lasso. This motivates the next section

that examines the theoretical connections between boosting and lasso to determine that

similar limitations are likely for boosting.

For model selection consistency, the first issue is that in general a single regularization

parameter cannot both be optimal for prediction and for model selection. The second,

which was described more fully in section 4.1.3, is that lasso requires strong conditions

on the correlation of covariates which are not likely to apply in block-correlated macroe-

conomic datasets. In the simulation and application sections, I will study more closely

what kinds of mistakes lasso and boosting make in a block-correlated scenario and pro-

vide some suggestions for how some interpretation of the results is still possible. Another
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issue is that for the theorems presented, the proofs are based on non-random covariates

X, whereas for economic data the covariates are likely to be random. However, the the-

oretical results for non-random X still provide insight into why there are limitations on

boosting and lasso in certain real world scenarios.

4.2 Relationship between Lasso and L2-Boost

In interpreting the results in the applied sections of the paper, it is informative to under-

stand the similarities between lasso and L2-Boost, and where these two methods diverge.

In the previous section, I explored the consistency for prediction and model selection of

lasso and boosting. Boosting does not have results available for finite sample prediction

error or model selection consistency. Describing the theoretical links between the two

methods can help clarify why performance differences in the two methods might exist

in practice and also what can be expected for model selection consistency of boosting,

where specific results are not available. I begin by describing LARS, which unified for-

ward stagewise regression and lasso in the same framework, and then proceed to some

more recent work unifying the method under the framework of subgradient optimization

(Freund et al. , 2017) and as a solution to differential equations (Hastie et al. , 2007). For

this section, the following algorithm is required, which was briefly introduced in Section

3.

Forward Stagewise Regression takes as input observations yt and each of p ob-

served predictors xt = (xt1, ..., xtp)
′ for t = 1, . . . , T . Let X be the T × p matrix of

covariates.

1. φ̂0(xt) = ȳ

2. For m = 1, . . . ,M

• For t = 1, . . . , T , ut = yt− φ̂m−1(xt); u is the T dimensional vector of residuals

for the current step.
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• Choose the single variable among the covariates with the highest correlation

with the current residuals. ĉ = X ′u is a vector with entries from ĉj from

j = 1, . . . , p that are proportional to the current correlation between xj and

the residuals.

jm = arg max |ĉj| (4.8)

3. Update φ̂m(xt) = φ̂m−1(xt) + δsign(ĉjm)xtj, where δ is the stepsize.

This algorithm is the same as L2-Boost, except the updates take a small step in the

direction of the most correlated single variable regression using the sign of the coefficient

of the single variable regression, rather than taking the step using the magnitude of the

coefficient. In the scenario where δ = v|β̂jm| then the two methods are equivalent.

4.2.1 LARS

Efron et al. (2004) showed that forward stagewise linear regression and lasso are both

specific cases of a more general algorithm called LARS. Furthermore, LARS provides

a computationally efficient way of computing the solution path for lasso as λ varies. I

describe in a rough sense the LARS algorithm below2. LARS takes as input observations

yt and each of p observed predictors xt = (xt1, ..., xtp)
′ for t = 1, . . . , T . Let β̂ be the

LARS estimated coefficients. Start with all coefficients β̂ equal to zero.

1. Let û = y − ȳ

2. Find the predictor xj most correlated with û

3. Increase β̂j and compute residuals û = y − β̂X until another predictor xk has as

much correlation with û as xj does

4. Increase β̂j, β̂k in a direction that is in equiangular between the two predictors until

a third variable enters the most correlated set.
2For the details on the exact algebra and implementation I refer the reader to the original paper (Efron

et al. , 2004)
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5. Increase all three coefficients equiangularly between the three variables until a fourth

variable enters the active set, and so on, until all the predictors are in the active set

and the correlation of the residuals with the predictors are zero.

Theorem 4 (Efron et al. (2004)). Under the Lasso Modification, and assuming the “one

at a time” condition3, the LARS algorithm yields all Lasso solutions.

Theorem 5 (Efron et al. (2004)). Under the Stagewise Modification, the LARS algorithm

yields all Stagewise solutions.

The lasso modification is a minor modification of the LARS procedure, while the

stagewise modification is a moderate modification of the procedure. I first summarize the

modifications at a high-level, adapted from (Hastie, 2003). A more explicit characteriza-

tion is presented later in the section in Definition 4.5, while characterizing a modification

of lasso that yields forward stagewise directly. In LARS, the active set (the indices of the

coefficients that are currently being increased in a direction equilangular between them)

can only monotonically increase. For the lasso modification, modify LARS so that if a

coefficient ever crosses zero, drop it from the active set, recompute the equilangular dis-

tance between the current active set, and continue. For Stagewise regression, the authors

consider an idealized procedure where the stepsize δ tends to zero. The Stagewise Modifi-

cation proceeds as follows. During the LARS procedure, if the direction for any predictor

j doesn’t agree in sign with corr(û, xj) then project the direction into the positive cone

and use the projected direction instead. Under a restrictive condition on the covariate

matrix, called the “positive cone condition”, then Efron et al. (2004) show that lasso,

forward stagewise, and LARS coefficient paths coincide.

4.2.2 Monotone Lasso

However, under most scenarios the paths of lasso and forward stagewise coefficients are

very different, and the forward stagewise paths are much smoother than the lasso paths.

3This means there are no ties so that only one index added to the active set at each step
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Hastie et al. (2007) derive a related result that links forward stagewise regression directly

to lasso and decribes explicitly the difference between the two in terms of the optimization

problem solved to derive the coefficient path. It characterizes the version of forward

stagewise regression as a monotone version of lasso. First, it is necessary to introduce

an expanded form of the n × p set of covariates X. X̃ includes each variable xi and its

negative −xi.

The monotone lasso is defined on the expanded covariate space X̃ as the regular

lasso problem, plus an additional constraint that the coefficient paths must be monotone

non-decreasing. In the expanded coefficient space for both algorithms, the monotone lasso

provides the same solution path for coefficients as the limiting version of forward stagewise

regression. This leads to a succinct characterization of forward stagewise regression. Every

point on the coefficient path of the regular version of lasso can be defined as the solution

to a convex optimization problem. The monotone lasso, however, cannot be characterized

as a convex optimization problem due to the monotonicity restriction, but the moves at

each point in the coefficient path can still be characterized as locally optimal. A few

definitions are presented before the main result. Let t be a continuous-valued variable

that indexes the steps taken in the LARS algorithm defined in the previous section, where

each step size is considered to be very small, tending to zero.

Definition 4.4. Assume β(t) is a differentiable curve in t ≥ 0, with β(0) = 0. The L1

arc-length of β(t) in [0, t] is:

TotalV ariation(β, t) =

∫ t

0

∣∣∣∣∣∣∣∣δβ(s)

δs

∣∣∣∣∣∣∣∣
1

ds (4.9)

This is a measure of smoothness of the curve of the coefficient path β(t).

Definition 4.5. Let β̂ ∈ R2p be an estimated coefficient for a linear model on the ex-

panded variable set X̃ and let û = y− X̃β̂. Let A be the active set of variables achieving

maximal correlation with û.
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1. The lasso move direction ρl(β) : R2p → R2p is:

ρl(β) =


0 ifX̃ ′û = 0

θ/
∑
j

θj otherwise,

with θj = 0 except for j ∈ A, where θA is the least squares coefficient of û on X̃A.

2. The monotone lasso move direction ρlm(β) : R2p → R2p is:

ρlm(β) =


0 ifX̃ ′û = 0

θ/
∑
j

θj otherwise,

with θj = 0 except for j ∈ A, where θA is the non-negative least squares coefficient

of û on X̃A.

Though the monotone lasso can’t be formulated as a solution to a global optimization

problem, it can be formulated in terms of local optimality.

Theorem 6 (Hastie et al. (2007)). The lasso and monotone lasso (forward stagewise)

move directions defined in Definition 4.5 are optimal in the sense that:

1. The lasso move decreases the residual sum of squares at the optimal quadratic rate

with respect to the L1 coefficient norm;

2. The monotone-lasso move decreases the residual sum of squares at the optimal

quadratic rate with respect to the coefficient L1 arc-length.

Furthermore, the coefficient paths for both methods can be defined by differential equations,

the first for lasso and the second for monotone lasso/forward stagewise regression:

1. δβ
δt

= ρl(β(t))

2. δβ
δt

= ρlm(β(t))
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with initial conditions β(0) = 0 for both

These results lead to an expectation that the boosting coefficient paths will be smoother

than lasso coefficient paths. Lasso is known for having the tendency to switch back and

forth between correlated variables depending on the regularization parameter and the

data; boosting would be much less likely to do this given each step of boosting takes into

account the smoothness of the coefficient path over previous iterations of the algorithm.

4.2.3 Subgradient Optimization

LARS is not the only framework that has united L2-Boosting, forward stagewise re-

gression, and lasso. Recent results in Freund et al. (2017) show that L2-Boost can be

formulated as a solution to a convex optimization problem that have the residuals as

the optimization variable rather than the parameters. They show that L2-Boost, forward

stagewise regression and lasso can all be viewed as special instances of subgradient descent

method of convex optimization applied to the following parameteric class of optimization

problems:

Pσ : min
u
||X ′r||∞ +

1

2δ
||u− y||22, where u = y −Xβ for some β

and where σ ∈ (0,∞] is a regularization parameter. The first term is the maximum

correlation between the predictors and the residuals and the second is a regularization

term that penalizes residuals that are far from the observations. This problem can be

shown to be a dual of the lasso problem. They use this insight to form computational

guarantees on the level of shrinkage and training error as boosting in the p < N case

converges to the least squares solution as the number of boosting iterations increase.

For future work it would be interesting to study the impact of this insight on statistical

guarantees of interest to econometricians, such as finite sample forms of consistency for

boosting.
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4.2.4 Discussion

The work unifying lasso and boosting under a common framework is important to under-

stand how boosting and lasso might be different in practice. First, it is clear that lasso

and forward stagewise regression are extremely similar. Under certain conditions, the

coefficient path for both will be the same; in most scenarios, the path will be different,

but the differences can be succinctly characterized as slight modifications of the unifying

algorithm LARS. This leads us to expect that boosting and lasso, despite appearing very

different, should have similar limitations in the prediction and variable selection tasks for

macroeconomic data. Second, boosting enforces smoothness on coefficient paths as the

regularization parameter varies; for lasso, correlated variables may switch in and out of

the active set more often. This divergence will affect the algorithm’s relative performance

in variable selection under block-correlated simulations and macroeconomic data. Third,

while lasso can be formulated as a convex optimization problem for each point in the

coefficient path, the forward stagewise path’s monotonicity restriction precludes such a

characterization; however, formulating forward stagewise regression as locally optimal.

This suggests that some results that are available for lasso may be much more difficult

to derive for boosting. Many recent results on lasso relating to confidence intervals and

standard errors (van de Geer et al. , 2014) are derived starting from the KKT conditions

of the lasso optimization problem for the parameters.

5 Simulations

In this section, I investigate the model selection and prediction forecasting of lasso, elastic

net, and boosting, for a high-dimensional model, with p >> T . I chose T = 200 since in

many macroeconomic applications, there is only a few hundred data observations available,

at most.

The data generating process, for t = 1 . . . T and T = 200 is:
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yt = xtβ + εt, εt ∼ N(0, 1) (5.1)

Let X be the T × p matrix of independent variables. There are p = 900 covariates in

30 blocks of 30 variables. xt is i.i.d. and xt ∼ N(0,Σ) where Σ is block-diagonal. Within

each block variables are correlated at ρ and have variance 1. I simulate β by assuming

that for each n = 1, . . . , 900, βn is 0 with probability 1 − q and 1 with probability q. If

βi is non-zero then βi ∼ N(0.5, 1). Increasing q decreases sparsity of the data generating

processes; increasing ρ increases correlation within blocks4. I will examine the results of

varying both ρ and q on coefficient path, model selection and prediction error for both

lasso and L2-boost.

5.1 Coefficient Path under Regularization

The first feature of regularized regression that I examine is the coefficient path as the

regularization parameter is varied. The results for simulations for ρ = 0.8, q = 0.05

for elastic net, lasso, and boosting are in Figure 2. Each line in the figure represents

the magnitude of one of the 900 individual coefficients as the regularization parameter

for the algorithm is relaxed. So, for boosting, the x-axis is the stopping parameter M

as M increases, and for elastic net and lasso, the x-axis is λ as it is relaxed from high

values to low values. With substantial collinearity between blocks of variables, even under

significant sparsity the lasso coefficients are highly unstable. Many coefficients that are

non-zero for high values of λ drop and then are zero for moderate values of λ, then

non-zero and rising again for low values of λ. Using elastic net with α = 0.7 does not

alleviate this problem; elastic-net, although it is designed to deal with correlated blocks

of variables, still shows a tendency to switch from one variable to another entirely as λ

is varied. Boosting is much more stable. In L2-Boost, once a variable is selected, its

4In real data, it is likely that ρ will not be constant across blocks; however, it is held constant in the
simulations for clarity, given the results aren’t materially different if ρ is varied across blocks.
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(a) Boosting, q = 0.05 and ρ = 0.8
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(b) Lasso, q = 0.05 and ρ = 0.8
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(c) Elastic Net, q = 0.05 and ρ = 0.8
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(d) Lasso, q = 0.01 and ρ = 0.8

Figure 2: Coefficient Paths Under Block Correlation

coefficient only monotonically increases. The final subfigure shows how lasso stability

begins to improve even in the collinear setting with r = 0.8 within each 30-variable block

when sparsity drops to q = 0.01.

I have demonstrated that for small fluctuations in the regularization parameter, vari-

ables selected by lasso and elastic net can fluctuate widely, while for boosting, coefficients
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monotonically increase as the regularization parameter is relaxed. This is expected given

the theoretical results on the local optimization problem that boosting solves, which takes

into account the smoothness of the coefficient path, compared to lasso, which is concerned

only with the model’s error and the L1 norm of the estimated coefficients. In the rest of

this section, I investigate whether the relative stability of the boosting coefficient path as

the regularization parameter varies helps or hinders model selection and prediction.

5.2 Model Selection

According to the theoretical results on model selection consistency presented earlier, lasso

has issues when sparsity doesn’t hold and variables are correlated; boosting, given the

close connections to lasso through LARS, is likely to have the same issues, although it is

not clear if the conditions on boosting are more or less strict than on lasso. To test the

theoretical predictions from Section 4, I present the model selection results for elastic net,

lasso, and boosting for four levels levels of sparsity and collinearity in Table 1 for p = 900.

For each combination of q and ρ, the first column gives the number of non-zero coefficients,

the second shows the % of non-zero coefficients in the true model that are non-zero in the

estimated model, and the third shows the % of zero coefficients in the true model that are

non-zero in the estimated model. The first scenario is q = 0.02, ρ = 0.3, p = 900, which

involves only moderate correlation and sparsity of approximately T/10. The second and

fourth involve higher sparsity, approximately T/20 with the second having high correlation

of 0.8 and the fourth having very high correlation of 0.95 within blocks. The third involves

higher density of approximately T/4 and high correlation of 0.8.

With p >> T , for all the block-correlated scenarios examined, elastic net, lasso, and

boosting all select far more variables than the true data-generating process, with the effect

exacerbated as the data generating process becomes more dense (as q increases); boosting

and elastic net both tend to select a similar number of non-zero variables that is higher

than lasso. For p = 900, in all scenarios except the most dense scenario, the three high-
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Table 1: Simulation Model Selection Results

Non-Zero % Correct % Incorrect Non-Zero % Correct % Incorrect

1) q=0.02,ρ = 0.3, p=900 2) q=0.01,ρ = 0.8,p=900
True 18 N/A N/A 9 N/A N/A
Lasso 82 86% 7.5% 44 79% 4.2%
ENet 90 86% 8.4% 51 79% 5.0%
Boost 90 86% 8.4% 49 79% 4.7%

3) q=0.05,ρ = 0.8, p=900 4) q=0.01,ρ = 0.95, p=900
True 45 N/A N/A 9 N/A N/A
Lasso 118 67% 10.3% 37 64% 3.5%
ENet 123 67% 10.9% 45 65% 4.4%
Boost 123 61% 11.3% 46 63% 4.5%

dimensional methods select the same percentage of correct variables, within 2 percentage

points. For the dense scenario, boosting selects less correct variables and more incorrect

variables than the other competing high-dimensional methods. The percentage of correct

variables selected by all methods drops as density increases or as correlation increases.

Between scenario 2 and 4, the density remains the same but correlation increases, and the

percentage of non-zero variables correctly selected drops by 15 percentage points for all

methods, from 80% to 65%. Between scenario 2 and 3, the correlation remains the same

but the density of the data-generating process increases. The percentage of nonzero vari-

ables correctly selected drops by at least 12 percentage points for all three methods. This

makes sense; the task of distinguishing between true non-zero coefficients and those corre-

lated with true non-zero coefficients becomes increasingly difficult as correlation increases

and as density increases, which corresponds to the theoretical guarantees on model selec-

tion consistency in lasso. For the percentage of zero coefficients incorrectly set to zero,

some common patterns occur; in all scenarios but one, boosting selects more variables

incorrectly than lasso and elastic net. This is likely due to the complications introduced

by the L1 arc length local optimization of boosting ; as M increases, once a variable is

set to non-zero, boosting can’t later drop that variable and set it to zero, whereas both

lasso and elastic net, which ignore the smoothness of the coefficient path as λ varies, can
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make switches in the active set. So the instability of elastic net and lasso shown in the

previous section may actually help improve model selection and prediction in correlated

data as the regularization parameter is moved to an optimal value.

5.3 Selection within Blocks

Table 2: Estimated Non-Zero Coefficients for Block #2 when q=0.05,ρ=0.8

True Model Lasso Elastic Net Lin. Boost

β̂33 2.49 2.05 1.95 1.97

β̂34 - 0.21 0.24 0.38

β̂43 0.44 - -

β̂46 - 0.06 0.09 -

β̂47 - 0.46 0.47 0.36

β̂50 - - - -0.06

β̂55 - 0.03 0.04 -

β̂59 - 0.07 0.06 0.06
60∑
p=31

β̂p 2.93 2.88 2.85 2.71

Given the macroeconomic data that I will examine in the next section is also dense

and correlated in economically-interpretable blocks, it is interesting to examine what sort

of mistakes boosting and lasso are making. Table 2 shows the results for the second block

of thirty variables in a single run of the simulation with q = 0.05, ρ = 0.8, which had the

worst results in terms of false positive rate. It describes how when making a mistake in

model selection in the dense and correlated scenario, the high-dimensional models are not

setting very many variables in blocks with no true non-zero coefficients to non-zero, but

instead are setting incorrectly activating variables within the same block as true non-zero

coefficients; however, the sum of the estimated coefficients for all coefficients is close to

the sum of the true model for the block. For example, in this simulation, L2-Boost sets

variable 33 and 34 non-zero, such that the sum of the coefficients on both is approximately

equal to the the true non-zero coefficient on variable 33. It set variable 47 non-zero instead

of variable 43, and incorrectly sets 50 and 59 to non-zero (though their coefficients offset
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each other). The sum of the estimated coefficients for boosting in this block is 2.71, which

is within 10% of the true sum of 2.93. To examine this finding in a more general scenario,

Table 3, shows the average absolute value of the sum of the coefficients within a block for

the true model for each of the four scenarios in the first column.

Sumblock =

30∑
b=1

∣∣∣∣∣ b×30∑
i=(b×30−29)

(βi)

∣∣∣∣∣
30

The latter three columns describe MSEblock, which is the average squared difference

between the sum of the estimated and true coefficients for each block for a single iteration

of a simulation for each of the four scenarios:

MSEblock =

30∑
b=1

b×30∑
i=(b×30−29)

(β̂i − βi)2

30

Table 3: MSE of sum of coefficients at block level

Avg block sum Lasso MSE Elastic Net MSE Lin. Boost MSE
q=0.02, ρ = 0.3 0.53 0.015 0.013 0.012
q=0.01, ρ = 0.8 0.32 0.005 0.005 0.005
q=0.05, ρ = 0.8 0.97 0.022 0.023 0.025

q =0.01, ρ = 0.95 0.43 0.006 0.007 0.009

In all scenarios, the squared difference between the estimated sum of the parameters

within each block is very small compared to the average absolute value of the sum of

the true coefficients within a block. This is true in dense and correlated scenarios where

the high-dimensional methods have a low rate of selecting the true variables correctly

and a high rate of setting zero variables incorrectly. The mistakes that the methods are

making in model selection appear to generally be within blocks, rather than across blocks.

This has not yet been explored theoretically, and motivates investigating whether high-

dimensional methods are consistent with respect to model selection at the block level,

which I leave to future work, but investigate further empirically in Section 6.
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The simulations have shown, as expected from the theoretical results on lasso and

the connections between lasso and boosting, that model selection performance worsens

as the block-correlated data generating process becomes more dense or correlated. How-

ever, I show that at a block-level, variable selection and parameter estimation improves,

motivating grouping and interpreting variables in economically meaningful blocks when

analyzing high-dimensional macroeconomic data with a block-correlated structure.

5.4 Prediction

Note that for the previous section on model selection, I selected the stopping parameters

of lasso and boosting based on cross-validation, meaning the model selected was optimized

for prediction error, not for model selection. Given that the same selected model can’t be

optimal for both prediction error and model selection, that the sample size was reasonably

small so asymptotic results may not hold, and that the sparsity assumption that lasso and

boosting rely on for consistency may not hold in some of the scenarios, it is no surprise

that there were some issues in the previous simulations with the true variables selected.

It is still valuable to examine the issues that arose given many economic practicioners

select parameters based on cross-validation and would still like to know the limits of

interpretation for high-dimensional models. Given the model estimation was done to

be optimal for forecasting, it is interesting to also examine how the previous results

correspond to out of sample forecasting performance of the three methods for the same

simulated data generating processes.

I hold back the last 10% of the simulated data as a test set and get the average out of

sample MSE over 1000 runs of the 200 sample data generating process described at the

beginning of this section. The in sample MSE reported in the table corrsponds to the

following equation, calculated on each of the three models for S = 1000:
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ˆMSE
(Model)

=

S∑
s=1

180∑
t=1

(xtβ̂
(Model)
s − yt)2

180× S
(5.2)

The out of sample MSE reported in the table corresponds to the following equation,

which is calculated for each of the three models for S = 1000:

ˆMSE
(Model)

OOS =

S∑
s=1

200∑
t=180

(xtβ̂
(Model)
s − yt)2

20× S
(5.3)

where for both equations β̂Model
s xt is the result of running boosting, lasso, or elastic net

on the training data from t = 1, . . . , 180 for Monte-Carlo simulation s with stopping

parameter selected by cross-validation on those first 180 observations.

The results are described in Table 4. Lasso has the lowest out of sample MSE in

every scenario, although for three out of four of the scenarios the performance of all three

high-dimensional methods is quite close, which makes sense given their close theoretical

links. The out of sample MSE for elastic net and boosting are generally comparable,

except for the third scenario where the data generating process is dense and correlated.

The in-sample MSE is generally comparable across the three methods, except in the third

scenario again, where boosting struggles both in and out of sample and performs far

worse than the other two competing methods. Unlike for model selection, only density

has a negative effect on prediction performance. The difference between scenario 2) and

4), where sparsity remains the same and correlation increases from high to very high, is

limited for all three methods, and the prediction performance actually improves in the

very highly correlated case for every method. This is likely because the model selection

mistakes within a block in the very highly correlated case have less of an effect on out

of sample error than in the ρ = 0.8 case since variables are so similar. In Section 4, I

showed that guarantees on model selection consistency required both restrictions on the

correlation matrix of the predictors and sparsity. However, asymptotic guarantees for
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prediction consistency only required a bound on the sum of the true coefficients. This is

evident in that increasing density from 2) to 3) results in a deterioration of out of sample

performance for all three methods, especially boosting.

Table 4: Simulation Prediction Results

MSE (Test) MSE (Training) MSE (Test) MSE (Training)

1) q=0.02, ρ = 0.3, p=900 2) q=0.01, ρ = 0.8, p=900
Lasso 1.92 0.58 1.38 0.76
ENet 2.05 0.55 1.43 0.73
Boost 1.98 0.53 1.44 0.74

3) q=0.05, ρ = 0.8, p=900 4) q=0.01, ρ = 0.95, p=900
Lasso 4.29 0.54 1.29 0.81
ENet 4.48 0.54 1.32 0.79
Boost 7.28 1.25 1.38 0.80

How does the especially poor result for boosting in the dense and correlated case

relate to the theory for model selection in Section 4 for lasso and boosting, which provided

asymptotic guarantees on both that guaranteed prediction consistency? The finite sample

results for lasso show that the order of the difference between the predicted and true

value of y decreases with sample size. The results presented in Section 4 for boosting for

prediction are asymptotic, but the same idea holds in finite samples. For the relatively

small sample size of T = 200, the performance of the high-dimensional methods may not

approach the asymptotic performance when p >> T . Furthermore, for different methods

the rate of convergence to the asymptotic result may be different.

6 Application: U.S. Macroeconomic Analysis

The source data is comprised of 123 monthly stationary-transformed U.S. macroeconomic

series from Jan. 1960, to July 2017 from the Fred-MD database described in McCracken &

Ng (2016) and included in Appendix A. I transform each series according to the stationary

transformation identified in the Appendix. I also add up to 3 lags of each monthly series,

giving a total of 492 potential explanatory variables and an intercept.
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Table 5: Groups in Fred-MD Dataset

Name Number of Series
Group 1 Output and income 16
Group 2 Labor market 31
Group 3 Housing 10
Group 4 Consumption, orders and inventories 7
Group 5 Money and credit 14
Group 6 Interest and exchange rates 21
Group 7 Prices 20
Group 8 Stock market 4

The dataset is divided into eight groups of similar variables. These groups are output

and income, labor market, housing, consumption, orders and inventories, money and

credit, interest and exchange rates, prices, and the stock market. The groups and the

number of variables in each are described in Table 5. The correlation map of the series is

in Figure 3. It is clear that the data displays block-correlated characteristics, with series

within each group correlated with each other, sometimes strongly, and less correlated with

series outside the group. The first small block in the bottom left is made up of various

series of industrial production. The second strong block is made up various employment

series. The third is formed from housing permit series. These three blocks combine to

form a less strong, but still defined correlated block of real variables from the first three

categories of Fred-MD. In the upper half of the correlation matrix, there are two small and

strongly correlated blocks within the interest rate category, one for interest rate levels and

one for spreads. There is a large block made up of price level series and a very small one

for the stock category. It is clear that the correlation matrix displays the block-diagonal

characteristics of the simulation that I explored in the previous section.

To reconcile the latest appendix of McCracken & Ng (2016) with the latest dataset

posted on the website and to create a balanced panel, it is necessary to drop thirteen series.

The seven ISM series listed in the appendix are no longer included in Fred-MD releases

since June 2016. Furthermore, ACOGNO, ANDENOx, TWEXMMTH, UMCSENTx and

VXOCLSx are all dropped due to missing data in order to create a balanced panel from
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Figure 3: Correlation Heatmap for Fred-MD Data

January 1960 to July 2017.

The four series that I focus on in the following section for prediction and variable

selection are stationary-transformed industrial production (Group 1), civilian unemploy-

ment rate (Group 2), 10 year treasury rate (Group 6), and CPI (Group 7). All four are

plotted from January 1960 to July 2017 in Figure 4.

6.1 Prediction

In this section, I describe the relative performance of lasso, L2-boosting, regression tree

boosting, and elastic net. I also illustrate a regression tree used in the non-linear tree

boosting procedure and describe the resistance of overfitting that non-linear boosting

displays compared to lasso.

The forecasting model used in this section is as follows. yt is one of the four outcome se-

ries plotted in Figure 4 and xt, the set of explanatory variables, are stationary-transformed

42



−
0.

04
−

0.
02

0.
00

0.
02

Date

1960 1963 1967 1970 1973 1977 1980 1984 1987 1990 1994 1997 2001 2004 2008 2011 2014

(a) ∆2 log of Industrial Production

−
0.

5
0.

0
0.

5

Date

1960 1963 1967 1970 1973 1977 1980 1984 1987 1990 1994 1997 2001 2004 2008 2011 2014

(b) ∆ of Civilian Unemp. Rate

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Date

1960 1963 1967 1970 1973 1977 1980 1984 1987 1990 1994 1997 2001 2004 2008 2011 2014

(c) ∆ of 10 year Treasury Rate

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Date

1960 1963 1967 1970 1973 1977 1980 1984 1987 1990 1994 1997 2001 2004 2008 2011 2014

(d) ∆2 log of CPI (All Items)

Figure 4: Transformed Target Variables

43



variables calculated from the raw data provided in Fred-MD.

100yt+h = β00 +
K∑
k=0

αkyt−k +
V∑
i=1

K∑
k=0

βikxi,(t−k) + εt+h, t = 1 . . . T (6.1)

with K = 3. The AR(1) and random walk baseline models are as follows:

100yt+h = β0 + αyt + εt+h (6.2)

where α = 1 for the random walk model and is unrestricted for the AR(1) model.

I compute direct recursive forecasts for h =3 months, 6 months and 12 months for four

series in Fred-MD for a model that includes lags up to and including K = 3. The Mean

Squared Forecast Error (MSFE) is computed using one step ahead forecasts starting with

the first third of the data as follows:

MSFE(model) =

2017:07−h∑
t=1979:03

(ŷt+h − yt+h)2

N
,

where N is the number of one-step-ahead forecasts computed and ŷt+h is the estimated

direct h month ahead forecast from a model trained with regularization parameters se-

lected by cross-validation on the subsample of the data from 1960:01 to month t− 1.

I presented the more general version of gradient boosting in Section 3. This is easily

adapted to adding more complex base learners other than single variable regression or

different loss functions other than L2-loss. The most well-known versions of boosting use

decision trees or regression trees for classification and prediction. Given in other domains

the most successful application of boosting has been as a non-linear classifier and predictor,

I have also included the results for boosting regression trees of depth 2, which allows for

interaction terms between variables and captures non-linearities in the data generating

process. The results for lasso, elastic net, L2-boosting, tree boosting, and the random walk

baseline are presented in Table 6. For all models except tree boosting, I cross validate
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at every step. For tree boosting, I choose the number of trees based on the first third

of the data, since cross validating at every step was computationally infeasible. Figure

5 shows a single regression tree base learner that makes up part of the overall boosting

classifier for the 1 month ahead forecast of the change in the unemployment rate. The

split variables are named by their code in the FRED-MD appendix. The tree assigns

the value for the outcome variable for an observation by splitting on the observation’s

value for total nonfarm employees and the 3 month lag of the spread between the 1 year

T-Bill Rate and Fed Funds rate. For example, for observations that reach the split in the

second level of the tree, if at that date the 1yr-Fed Funds spread is inverted, then the

tree estimates an increase in the unemployment rate of 0.02; if the spread is not inverted,

then the tree estimates an decrease in unemployment rate three months ahead of -0.03.

This corresponds to previous evidence showing that inverted yield curves correspond to

future real economic downturns.

0.165

xpayems,t < −1.35

0.020

x1yffm3,t < −0.06

-0.031

x1yffm3,t ≥ −0.06

xpayems,t ≥ −1.35

Figure 5: Boosted Regression Tree for 1-month ahead forecast of unemployment rate

Figure 6 shows the average out of sample error, in green, for tree boosting and in red

for lasso. This is derived from 10-fold cross validation estimation of the parameters for

the prediction function for 1 month ahead change in unemployment rate. For boosting,

the in sample error, in blue, is also shown and the graph from left to right describes

the change in the MSE as the regularization parameter is relaxed (M is increased). For
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lasso, the top axis also shows the number of non-zero coefficients, the MSE also includes

standard error bars, and the graph from left to right describes the change in the MSE as

the regularization parameter is strengthened (λ is increased). Boosting only a few trees

results in poor performance; as the number of trees increases up to 100 the out of sample

error and in sample error decreases. As too many trees are added, though, the estimated

functions fits too much noise in the training sample and out of sample error worsens.

As the number of trees approaches 300 the training data is fitted nearly perfectly. It is

interesting though that tree boosting, compared to lasso, despite using a highly complex

learner, does not overfit as significantly as the number of trees is increased. The out of

sample increases past 100 but not steeply. For lasso, on the other hand, as λ is relaxed,

overfitting occurs quickly, and the out of sample error increases sharply away from the

optimal value of λ. This resistance to overfitting is known to be a property of boosting

when using base learners of a certain complexity (such as trees) and is described in more

detail in Schapire & Freund (2012).
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Figure 6: Out of Sample MSE as Regularization Parameter Varied

The forecast error results are presented in Table 6 as a percentage of the AR(1) error

since that model is the better baseline method. The random walk baseline model is far

worse than the AR model for every series at every forecast horizon. For the one month
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ahead direct forecast, the three linear methods for unemployment, industrial production,

and for CPI outperform the AR model by a wide margin5, by 15-24%. Tree boosting also

outperforms significantly but with less of a margin than the linear methods. For the 3

and 6 month ahead direct forecast, the methods outperform the AR model by 1-5% for

the unemployment rate and 10-year T-bill rate series. Boosting methods perform best at

the 3 month time horizon. For the 6 month ahead industrial production, the AR model is

the best model, by 6-20%. For the rest, the methods perform similarly to the AR model.

Unlike in the simulation results, there is no linear method that consistently outperforms

the other linear methods. For the horizons and series where the high-dimensional methods

outperform, lasso is the best model twice, L2-boosting is the best method 3 times, and

elastic net is the best 4 times. The tree boosting method is the best method of the high-

dimensional models in 5 scenarios, but in only two of those outperforms the AR model

by more than 1 percent, and in two of those performs worse then the AR model. It is not

surprising that tree boosting shows some tendency to overfit, given boosting regression

trees of depth 2 allows a far more complex model than any of the linear models.

I performed a few robustness checks and alternative analyses, and report the qualita-

tive results here. I checked adding variables with lags longer than 3 months and found

that performance worsened for all of the high-dimensional methods due to overfitting.

Including no lags of the variables also decreased performance; the information in a few

lags does help forecasting even though it increases the dimensions of the predictors sig-

nificantly. I also ran the forecasting exercise without cross-validation at every step, by

choosing the regularization parameter purely from the first third of observations for each

series for every estimation method. This is significantly less computationally intensive,

but I found that cross-validating at every step improves performance by at least a few

percent for the high-dimensional methods. Finally, I checked the results for several other

5For future work, it would be useful to test if this difference is statistically significant using a test
like the Diebold-Mariano test (Diebold & Mariano, 2002). The original test, though, was not designed
for comparing models that are nested and also not designed for comparing forecast errors derived from
repeated out of sample errors (Diebold, 2012).
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Table 6: MSFE vs. AR Baseline for Four U.S. Macroeconomic Series

Industrial Prod. Unemp. Rate
h=1 h=3 h = 6 h=1 h=3 h=6

Lasso 0.819 1.03 1.10 0.797 0.957 0.972
ENet 0.825 1.02 1.11 0.766 0.955 0.968

Lin. Boost 0.820 1.01 1.21 0.765 0.974 0.968
Tree Boost 0.859 0.993 1.06 0.785 0.953 0.970
No-Change 1.52 1.53 1.42 1.72 1.81 1.76

CPI Total 10 Yr T-Bill
h=1 h=3 h = 6 h=1 h=3 h=6

Lasso 0.813 0.997 1.03 1.02 0.987 0.993
ENet 0.805 1.00 1.04 0.992 0.986 0.988

Lin. Boost 0.816 1.00 1.03 1.00 0.974 0.996
Tree Boost 0.949 0.997 1.00 1.09 0.992 1.00
No-Change 2.29 2.33 2.33 1.50 1.35 1.35

series not reported in detail here and found the results to be qualitatively similar to the

results on the main series. I focus on the main four series reported in detail in the following

section on variable selection.

6.2 Variable Selection

In this section I describe the variable selection results for L2-boosting, lasso, and elastic

net for the 1 month ahead forecast of the target series; I also examine the results from

grouping coefficients based on economic intuition. I use the following model, which is the 1

month-ahead forecast model from Equation 3.1 with 3 additional lags of each independent

variable included (K = 3), and each of the dependent and independent variables scaled

to mean 0 and standard deviation 1. I choose to focus on the 1-month ahead forecast

model since that is the time horizon where the machine learning methods most clearly

outperform the AR(1) baseline.

ỹt+1 =
K∑
k=0

αkỹt−k +
V∑
i=1

K∑
k=0

βikx̃i,(t−k) + εt+1, t = 1 . . . T (6.3)

In Table 7, for the 1 month ahead industrial production, unemployment rate, inflation,
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and interest rate variable predicted in the previous subsection, I demonstrate which are the

explanatory variables with the top 8 largest coefficients, for each of the linear estimation

methods. Given the variables are all scaled for this section, the coefficient indicates for a

standard deviation shift in the independent variables, which variables result in the largest

forecasted shift, in standard deviations of the forecasted variable. In the first row for each

of the sections of the table, I also include the number of non-zero variables for each of

the methods. Apart from CPI, where boosting selects quite a few more variables than

lasso and elastic net, the three methods select very similar numbers of variables for each

forecasting function. For the 10Y T-Bill forecasting function, boosting actually selects

the most parsimonious model, in contrast to the simulations where lasso always selected

the most parsimonious model. More generally, for all four series, the identity, sign, and

size of the coefficients selected for each of the three variables are very similar. For the

10Y T-Bill 1 month forecast, the three methods select the exact same variables, in the

same order. Before examining boosting and lasso theoretically in section 4, this result

would likely have been very surprising; on the surface, the optimization function of lasso

and the stepwise procedure of boosting appear very different. However, in reality, both

are forms of regularized regression.

Looking at some of the individual series, the results are sensical. 1 month ahead

changes in industrial production is associated positively with positive measures of average

hourly earnings in construction, other measures of industrial production, and reductions in

unemployment. 1 month ahead changes in the unemployment rate is negatively associated

with positive measures of employment and positively associated with increasing inversion

in term spreads, which is a known leading indicator of recession. Acceleration in 1 month

CPI is associated positively with growing money supply, expenditure and commodity

proces, as expected, but shows some tendency to revert to the mean, with a negative

association with current movements in CPI . There are, in addition, some variables where

the signs do not hold with common intuition. For example, for the elastic net estimation
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Table 7: Top 8 Variables and Coefficients for 1 month ahead forecast functions

Lasso Elastic Net L2-Boosting

Industrial Production
NZ 41 47 48
1. Emp. Non-Dur. 0.111 Emp. Non-Dur. 0.109 AHE: Constr. 0.086
2. S&P Div. Yield -0.071 AHE: Constr. 0.077 Emp. Non-Dur. 0.085
3. IP: Non-Dur.2 0.069 S&P Div. Yield -0.073 Inventory: Sales1 -0.081
4. AHE: Constr. 0.065 IP: Non. Dur.2 0.069 S&P Div. Yield -0.0741
5. S&P Industr.2 0.064 S&P Industr.2 0.066 IP: Non-Dur.2 0.068
6. Initial Claims -0.062 Initial Claims -0.061 Emp: Goods-Prod. 0.067
7. Inventory: Sales1 -0.06 AAA Rate 0.052 S&P Industr.2 0.063
8. H. Permits Midwest -0.046 3mT-FF 0.050 Initial Claims -0.060

Unemployment Rate
NZ 57 60 57
1. Emp: TPU -0.112 Emp: TPU -0.109 Emp: Goods-Prod. -0.179
2. 3mT-FF1 -0.098 Unemp: < 5 wks -0.095 Unemp Rate -0.017
3. Unemp: < 5wk -0.095 Unemp Rate -0.092 Unemp: < 5 wks -0.0903
4. Unemp Rate -0.095 3mT-FF -0.091 Emp: TPU -0.089
5. Initial Claims 0.089 Initial Claims 0.087 Initial Claims 0.082
6. Emp: Constr. -0.084 Emp: Constr1 -0.082 Emp: Goods-Prod1 -0.077
7. Help-Wanted1 -0.08 Help-Wanted1 -0.079 Help-Wanted1 -0.076
8. Emp: Durables3 0.072 3m CP -FF2 0.067 3mT-FF3 -0.075

CPI: All Items
NZ 70 68 89
1. CPI:All -0.302 CPI:All -0.284 CPI: All -0.317
2. Oil Px 0.157 Oil Px 0.149 Oil Px 0.166
3. M2 Real 0.148 M2 Real 0.148 M2 Real 0.152
4. CPI:Transp.1 -0.108 CPI:Transp.1 -0.108 CPI:Transp.1 -0.144
5. Dep. Reserves -0.095 Dep. Reserves -0.092 Dep. Reserves -0.097
6. Real PCE 0.081 Real PCE 0.079 Real PCE 0.086
7. IP: Res. Utilities 0.060 IP: Res. Utilities 0.055 5Y Treas. 0.0773
8. Nonrev. Credit -0.060 Nonrev. Credit -0.055 IP: Res. Utilities 0.073

10Y T-Bill
NZ 26 26 22
1. 10Y T-Bill 0.214 10Y T-Bill. 0.207 10Y T-Bill 0.215
2. S&P Div. Yld1 -0.10 S&P Div. Yld1 -0.098 S&P Div. Yld1 -0.102
3. 1Y - FF1 -0.090 1Y- FF1 -0.080 1Y - FF1 -0.102
4. Inventory:Sales -0.076 Inventory:Sales -0.075 Inventory:Sales -0.078
5. 10Y T-Bill1 -0.071 10Y T-Bill1 -0.067 10Y T-Bill1 -0.072
6. Retail Sales 0.0495 Retail Sales 0.0494 Retail Sales 0.053
7. Emp: wholesale 0.0458 Emp: wholesale 0.0405 Emp: wholesale 0.044
8. CPI: ex. Food 0.0429 CPI: ex. Food 0.0405 CPI: ex. Food 0.042
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of 1 month ahead unemployment rate, the 2nd lag of 3m CP - FF spread coefficient is

positive, while the 3m - FF spread coefficient is negative; this could be a result of the

total effect for a set of correlated variables (term spreads) showing up partially in multiple

coefficients, which I seek to address by interpreting in blocks.

The problem with the method above is that, as seen in the simulation, for high-

dimensional methods many correlated variables have non-zero, but smaller coefficients.

Simply ranking individual coefficients can miss groups of coefficients that move together

and have a larger overall effect on the dependent variable. This motivates interpreting the

variables within economically-meaningful blocks to reach stable conclusions on variable

importance for boosting, lasso, and elastic net, as suggested in Li & Chen (2014). For

each of the four variables in this section, I rank the top 3 categories of variables by the

sum of the non-zero coefficients within each category. This is shown for lasso only given

that the top three groups are identical for all three methods with nearly identical total

coefficients. The results are closely associated with economic intuition. 1 month ahead

industrial production is positively associated with increases in employment and output

and negatively associated with measures of increases in financing costs. 1 month ahead

changes in unemployment rate is negatively associated with increases in labor market,

consumption and manufacturing measures and increases in term spreads. 1 month ahead

acceleration in CPI shows reversion to the mean with strong negative sign on other price

measures, and has a positive association with increases in output and increases in rates.

1 month ahead changes in the 10y rate is positively associated with previous changes in

interest rates, with increases in employment and decreases in stock market yields.

Note that the method of aggregation used in this section is imperfect. Though I

demonstrated that within most of the eight groups of variables there is strong positive

correlations, that is not always the case; for example initial claims and the unemploy-

ment rate would be negatively correlated with measures that count total employment per

industry. Simply adding the coefficients of all the employment variables together likely
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Table 8: Sum of coefficients of top 3 groups selected for lasso

Industrial Production Unemployment Rate
1. Labor Market 0.25 Labor Market -0.54
2. Output and income 0.16 Consumption, orders, inventories -0.124
3. Interest and exchange rates 0.155 Interest and exchange rates -0.120

CPI: All 10Y T-Bill
1. Prices -0.475 Stock. Market -0.077
2. Output and Income 0.178 Labor Market 0.076
3. Interest and exchange rates 0.103 Interest Rates 0.071

underestimates the relation between the manually defined employment block and the out-

come variable. This work, however, is meant to show the sensical results that come from

interpreting high-dimensional methods between relatively independent blocks of variables,

which is still accomplished using simple grouping and aggregation procedures. Examining

which are the main individual coefficients that are positive before interpreting the sign

of the coefficient on the groups also helps in interpreting when there is some complexity

in correlations within a group. For future work, it would be fruitful to dicuss statistical

procedures that would not rely on manually defined groups, but instead take into account

correlation structure so that aggregation best captures the reduced form relationship be-

tween an outcome variable of interest and changes in unemployment. Various forms of

unsupervised learning could be used in this capacity, for example.

I also run some alternative methods to check the variable selection results and show

why high-dimensional methods like lasso and boosting that retain such interpretable re-

sults are advantageous compared to OLS or factor model alternatives. First, for each

of the four series analyzed above, for the 1 month ahead forecast, I estimate a one step

ahead forecast model

yt+h = βxt + εt

using OLS, where the vector of predictors xt includes only the top eight variables selected

by lasso (which is nearly identical to the top 8 selected by elastic net and L2-boosting)

and check the significance level of each of these coefficients. The results are in Table 9,
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Table 9: OLS coefficients for top 8 variables selected by lasso for 1m ahead forecast

Industrial Production Unemployment Rate
Emp. Non-Dur 0.26*** Emp: TPU -0.25***
S&P Div. Yield -0.12*** 3mT-FF1 -0.21***
IP: Non-Dur2 0.14*** Unemp: < 5wk -0.13***
AHE: Constr. 0.13*** Unemp Rate -0.10**
S&P Industr.2 0.14 *** Initial Claims 0.18***
Initial Claims -0.15 *** Emp: Constr. -0.17***

Inventory: Sales -0.11*** Help-Wanted1 -0.13***
H. Permits Midwest 0.14*** Emp: Durables3 -0.10***

R2 0.33 R2 0.33
CPI: All Items 10Y T-Bill

CPI: All -0.29*** 10Y T-Bill 0.28***
Oil Px 0.20*** S&P Div. Yld1 -0.16***

M2 Real 0.19*** 1Y - FF1 -0.16***
CPI:Transp.1 -0.18*** Inventory:Sales -0.12 ***
Dep. Reserves -0.16*** 10Y T-Bill1 -0.16***

Real PCE 0.13*** Retail Sales 0.08
IP: Res. Utilities -0.109*** Emp: wholesale 0.13***
Nonrev. Credit -0.11*** CPI: ex. Food 0.10***

R2 0.30 R2 0.24
***Significant at a 1% level, ** Significant at a 5% level

where variables are identified by the short names given in Table 7.

The top 8 variables selected by lasso are significant at a 1% level for all series, except

retail sales for the 10Y T-Bill forecasting function and unemployment rate for the unem-

ployment rate forecast, which is significant at a 5% level. Lasso, L2-boost, and elastic

net are selecting variables that correspond to those that have large and significant coeffi-

cients under a regular OLS regression, in one step without the testing of different model

combinations that would be required to select from a set of high-dimensional covariates

using regular OLS.

So far in this paper, we have ignored dynamic factor models, since from the estimation

of a basic factor model it is difficult to interpret the direct effect of a single variable

or group of variables on the outcome variable. An alternative method of testing the

relationship between manually defined groups to a forecasted variable is running a model
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using OLS and the first principal component of each group in the FRED-MD dataset.

The model is:

yt+h = αft + εt

where ft is a 8 dimensional and contains the first principal component of each of the

groups of variables defined in the FRED-MD dataset. The results are in Table 10. For

some of the series, the conclusions on which groups influence the forecasted variable by

examining the significance level of the first principal component is similar to the conclusion

obtained by examining the size of the lasso coefficients in groupings. For unemployment

rate, the first principal components of labor market and interest and exchange rates are

significant at a 1% level and also rank in the top 3 groups by size of coefficient in the

grouping exercise for lasso. For 10Y rate, the stock market and interest rate components

are significant at a 5% level and appear in the top 3 groupings from the lasso exercise.

However, for CPI, none of the first principal components of the groups are significant

in predicting 1 month ahead CPI, even though we know from the OLS regression ran

in the previous table that there are many individual variables that are significant in the

prediction function for CPI. The R2 is close to zero for CPI and 10Y Rate, indicating

that the first principal components of the groups are explaining very little variation in

the forecasted variable.

The issue is that even within groups that relate strongly to the outcome variable,

not all variables are relevant for predicting CPI. The variation of all variables in a group

contributes to the first estimated factor. This could be improved by using a likelihood

approach for constructing factors that takes into account the forecasted variable, rather

than PCA, although this is out of scope of this paper. Furthermore, the variation that is

relevant for predicting CPI may be contained not in the first, but in the second, or tenth

principal component. But, including all of the principal components for every group

quickly expands the covariate set, eventually resulting in the need for a high-dimensional
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Table 10: OLS coefficients on first principal component of groups for 1m ahead forecast

Ind. Prod. Unemp. Rate CPI: All 10Y Rate
Output and income -0.06*** 0.04*** -0.009 0.007

Labor market -0.021 0.06*** 0.004 -0.016
Housing -0.013 0.00 -0.002 -0.003

Cons., Orders, Invent. -0.022 -0.004 -0.002 -0.013
Money and credit 0.01 0.007 -0.031 0.005

Interest and exch. rates -0.035*** 0.032*** -0.006 0.024**
Prices -0.004 -0.009 -0.016 -0.012

Stock Market -0.104*** 0.062*** 0.008 -0.08***
R2 0.27 0.26 0.01 0.05

method estimation method again, negating the dimension reduction provided by principal

components in the first step. Furthermore, if more than the first principal component is

included, there is not a clear interpretation if the third component of a group, for example,

is significant in predicting CPI whereas the first two are not. This in contrast to one-step

methods where the groups are derived from summation of existing coefficients and it is

straightforward to drill down in groups and see which variables are non-zero within the

group (even though we know that more detailed interpretation is muddled by correlation

among the predictors). This comparative exercise indicates the difficulty with interpreting

factor models, even one modified so that factors correspond to economically meaningful

blocks.

The results for OLS on the top 8 variables selected by lasso and boosting shows that the

methods are capable of selecting variables that explain a significant amount of variation in

the forecasted variable, without multiple testing and search methods that are required to

find the variables when running OLS only. The results for an interpretable factor model,

where factors are estimated individually for each group in the in FRED-MD dataset, runs

into issues where the dimension reduction occurs independently of the model estimation,

so the first principal components of relevant groups of variables do not necessarily relate

to the outcome variable. Including too many components would improve this but would

eventually negate the dimension reduction provided by estimating the factors in groups
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in the first place. With lasso and boosting, methods that combine dimension reduction

and estimation in one step, I was able to quickly identify which economically-meaningful

blocks are relevant, with sensical results, with a post estimation summation of coefficients.

7 Conclusion

The statistical theory behind lasso has been studied extensively and the method is be-

coming increasingly familiar to economists. In this paper, I examine the main results for

lasso on prediction consistency, which are strong, and model selection consistency, which

rely on assumptions that are not likely to hold in most large macroeconomic datasets.

Boosting is not as familiar to economists and statisticians, so there are still some results

that are unavailable for L2-Boost that are available for lasso, such as finite sample pre-

diction risk and results for model selection consistency. Given the close ties between lasso

and L2-Boost examined through LARS in this paper, I would expect that for future work

theoretical results for model selection consistency would be possible to derive for boosting.

They would likely also rely on an even more strict condition on density and correlation

of the covariates, along with a beta-min condition, given the simulation results presented

in this paper, which showed how boosting’s performance deteriorated more rapidly than

lasso’s as the density of the data generating process was increased.

I find that for prediction and variable selection performance, boosting is more sen-

sitive to lack of sparsity in the generating process than lasso is for finite samples in

simulations. Otherwise, in simulations and applications of data-generating processes with

block-correlated predictors I find that the results for both are very similar, although lasso

selects the smallest number of variables while maintaining prediction performance. I have

examined the forecasting performance of high-dimensional linear methods for unemploy-

ment, real production, price level, and interest rate series at a variety of time horizons and

have found robust evidence, especially at the 1 month time horizon, that high-dimensional
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linear methods outperform the AR baseline by a wide margin. The non-linear boosting

method performs well, especially at longer time horizons, but only result in minor gains

compared to the AR model for the horizons where it is the best model. There was no

clear winner between the linear methods, with comparable results in all time horizons and

with all four series examined.

Given the close linkage between lasso-type methods and L2-Boost through LARS, this

comparable performance is not surprising, despite how different the algorithms first ap-

pear. However, there are some differences that are important to consider. Boosting is

much more modular than lasso; it is very easy to modify the stepwise algorithm based on

different loss functions or more complex base learners. Incorporating regression trees, on

the other hand for lasso, would be more difficult and require stepwise approximations to

lasso. In this application I didn’t find that the non-linear methods of boosting outper-

formed the linear methods significantly for forecasting, although there is some evidence of

outperformance at the longer time horizons. It was encouraging that there wasn’t much

evidence of overfitting even in the 1 month forecasts where linear methods performed

well, despite the complexity of regression trees as base learners compared to single vari-

able regressions. Lasso, on the other hand, as illustrated in Section 6.1, is more prone

to overfitting as the regularization parameter is relaxed. In other economic applications

with data generating processes that take complex non-linear forms, tree boosting may

outperform further. Given the performance of lasso and L2-Boost are similar in the ap-

plication to real data, and lasso is more parsimonious and generally more accurate in

the simulated linear data, these results do not make a compelling case for economists

to use L2-Boosting instead of lasso for high-dimensional linear models. Instead, I have

used the consistency results available and the linkages to lasso for L2-boost to introduce

general gradient boosting as a methodology; the case for using more complex non-linear

methods of boosting is stronger once the linear case is understood from the perspective

of an econometrician.
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Given the likely violations of the assumptions ensuring model consistency for all three

methods, interpreting coefficients on individual variables is difficult. Individual variable

selection, though, is suprisingly similar across the lasso, boosting and elastic net for each

of the four forecasting functions examined, and the top coefficients have the identity and

sign that would be expected (for example, employment variables are the best leading

indicator for changes to the unemployment rate). I suggest that grouping variables in

economically meaningful groups can make interpretation more robust. I show that sensical

and interpretable group coefficients result when aggregating the individual coefficients

of the forecasting functions for four U.S. macroeconomic series. Two further avenues

are suggested by the results presented here. First, it would be interesting to develop a

formal proof showing that if variables are tightly clustered in correlated blocks, the high-

dimensional models are block-consistent for model selection, meaning the total effect of

the block of variables is estimated correctly, even if individual coefficients within a block

are not according to the true model. Second, it would be useful to develop interpretable

grouping methods that take into account the complexity of correlation structure in real

data, where clean blocks as in the simulation are not likely to occur.

This is the first time that the difficulties with the block-correlated nature of high-

dimensional macroeconomic time series has been investigated closely from the perspective

of regularization techniques for estimation. This is also the first time that the forecasting

and variable selection performance of boosting and lasso has been compared directly for

economic data both theoretically and in an applied contex. I find that model selection

issues due to correlation are best addressed by grouping variables when interpreting coeffi-

cients. I motivate additional work on basic theory for boosting, on formulating a notion of

block-consistency for high-dimensional methods dealing with block-correlated data, and

deriving interpretable statistical grouping methods rather than relying on manual groups.
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Bühlmann, Peter, & Hothorn, Torsten. 2007. Boosting algorithms: Regularization, pre-
diction and model fitting. Statistical Science, 477–505.
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Appendix

The column tcode denotes the following data transformation for a series x: (1) no transformation;
(2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1.0). The FRED
column gives mnemonics in FRED followed by a short description. The comparable series in
Global Insight is given in the column GSI.

Some series require adjustments to the raw data available in FRED. We tag these variables with
an asterisk to indicate that they been adjusted and thus differ from the series from the source. A
summary of the adjustments is detailed in the paper https://research.stlouisfed.org/wp/2015/2015-
012.pdf.

Group 1: Output and income

id tcode fred description gsi gsi:description
1 1 5 RPI Real Personal Income M_14386177 PI
2 2 5 W875RX1 Real personal income ex transfer receipts M_145256755 PI less transfers
3 6 5 INDPRO IP Index M_116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M_116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M_116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M_116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M_116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M_116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M_116460995 IP: bus eqpt
10 13 5 IPMAT IP: Materials M_116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M_116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M_116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M_116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M_116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M_116461275 IP: fuels
16 19 1 NAPMPI ISM Manufacturing: Production Index M_110157212 NAPM prodn
17 20 2 CUMFNS Capacity Utilization: Manufacturing M_116461602 Cap util

1
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Group 2: Labor market
id tcode fred description gsi gsi:description

1 21* 2 HWI Help-Wanted Index for United States Help wanted indx
2 22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M_110156531 Help wanted/unemp
3 23 5 CLF16OV Civilian Labor Force M_110156467 Emp CPS total
4 24 5 CE16OV Civilian Employment M_110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M_110156541 U: all
6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M_110156528 U: mean duration
7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_110156527 U < 5 wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_110156523 U 5-14 wks
9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M_110156524 U 15+ wks
10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_110156525 U 15-26 wks
11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M_110156526 U 27+ wks
12 32* 5 CLAIMSx Initial Claims M_15186204 UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M_123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M_123109172 Emp: gds prod
15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M_123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M_123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M_123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M_123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M_123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M_123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M_123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M_123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M_123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M_14386098 Avg hrs: mfg
29 49 1 NAPMEI ISM Manufacturing: Employment Index M_110157206 NAPM empl
30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_123109182 AHE: goods
31 128 6 CES2000000008 Avg Hourly Earnings : Construction M_123109341 AHE: const
32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_123109552 AHE: mfg

Group 3: Housing
id tcode fred description gsi gsi:description

1 50 4 HOUST Housing Starts: Total New Privately Owned M_110155536 Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M_110155538 Starts: NE
3 52 4 HOUSTMW Housing Starts, Midwest M_110155537 Starts: MW
4 53 4 HOUSTS Housing Starts, South M_110155543 Starts: South
5 54 4 HOUSTW Housing Starts, West M_110155544 Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M_110155532 BP: total
7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M_110155531 BP: NE
8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M_110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M_110155533 BP: South
10 59 4 PERMITW New Private Housing Permits, West (SAAR) M_110155534 BP: West
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Group 4: Consumption, orders, and inventories
id tcode fred description gsi gsi:description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M_123008274 Real Consumption
2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_110156998 M&T sales
3 5* 5 RETAILx Retail and Food Services Sales M_130439509 Retail sales
4 60 1 NAPM ISM : PMI Composite Index M_110157208 PMI
5 61 1 NAPMNOI ISM : New Orders Index M_110157210 NAPM new ordrs
6 62 1 NAPMSDI ISM : Supplier Deliveries Index M_110157205 NAPM vendor del
7 63 1 NAPMII ISM : Inventories Index M_110157211 NAPM Invent
8 64 5 ACOGNO New Orders for Consumer Goods M_14385863 Orders: cons gds
9 65* 5 AMDMNOx New Orders for Durable Goods M_14386110 Orders: dble gds
10 66* 5 ANDENOx New Orders for Nondefense Capital Goods M_178554409 Orders: cap gds
11 67* 5 AMDMUOx Unfilled Orders for Durable Goods M_14385946 Unf orders: dble
12 68* 5 BUSINVx Total Business Inventories M_15192014 M&T invent
13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M_15191529 M&T invent/sales
14 130* 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect

Group 5: Money and credit
id tcode fred description gsi gsi:description

1 70 6 M1SL M1 Money Stock M_110154984 M1
2 71 6 M2SL M2 Money Stock M_110154985 M2
3 72 5 M2REAL Real M2 Money Stock M_110154985 M2 (real)
4 73 6 AMBSL St. Louis Adjusted Monetary Base M_110154995 MB
5 74 6 TOTRESNS Total Reserves of Depository Institutions M_110155011 Reserves tot
6 75 7 NONBORRES Reserves Of Depository Institutions M_110155009 Reserves nonbor
7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M_110154564 Cons credit
10 79* 2 CONSPI Nonrevolving consumer credit to Personal Income M_110154569 Inst cred/PI
11 131 6 MZMSL MZM Money Stock N.A. N.A.
12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.
13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Group 6: Interest and exchange rates
id tcode fred description gsi gsi:description

1 84 2 FEDFUNDS Effective Federal Funds Rate M_110155157 Fed Funds
2 85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 86 2 TB3MS 3-Month Treasury Bill: M_110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M_110155166 6 mo T-bill
5 88 2 GS1 1-Year Treasury Rate M_110155168 1 yr T-bond
6 89 2 GS5 5-Year Treasury Rate M_110155174 5 yr T-bond
7 90 2 GS10 10-Year Treasury Rate M_110155169 10 yr T-bond
8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond
10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg
19 102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_110154768 Ex rate: Switz
20 103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M_110154755 Ex rate: Japan
21 104* 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M_110154772 Ex rate: UK
22 105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M_110154744 EX rate: Canada
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Group 7: Prices
id tcode fred description gsi gsi:description

1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds
2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M_110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M_110157500 PPI: crude matls
5 110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing M_110157273 Spot market price
6 111 6 PPICMM PPI: Metals and metal products: M_110157335 PPI: nonferrous
7 112 1 NAPMPRI ISM Manufacturing: Prices Index M_110157204 NAPM com price
8 113 6 CPIAUCSL CPI : All Items M_110157323 CPI-U: all
9 114 6 CPIAPPSL CPI : Apparel M_110157299 CPI-U: apparel
10 115 6 CPITRNSL CPI : Transportation M_110157302 CPI-U: transp
11 116 6 CPIMEDSL CPI : Medical Care M_110157304 CPI-U: medical
12 117 6 CUSR0000SAC CPI : Commodities M_110157314 CPI-U: comm.
13 118 6 CUSR0000SAD CPI : Durables M_110157315 CPI-U: dbles
14 119 6 CUSR0000SAS CPI : Services M_110157325 CPI-U: services
15 120 6 CPIULFSL CPI : All Items Less Food M_110157328 CPI-U: ex food
16 121 6 CUSR0000SA0L2 CPI : All items less shelter M_110157329 CPI-U: ex shelter
17 122 6 CUSR0000SA0L5 CPI : All items less medical care M_110157330 CPI-U: ex med
18 123 6 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl
19 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes
20 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
21 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Group 8: Stock market
id tcode fred description gsi gsi:description

1 80* 5 S&P 500 S&P’s Common Stock Price Index: Composite M_110155044 S&P 500
2 81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials M_110155047 S&P: indust
3 82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
4 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
5 135* 1 VXOCLSx VXO
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